
10 The Sylow Theorems and Applications

The textbook proof of Sylow’s Theorems is the rather classic proof, using
indcution and exploiting the class equation. Here we give an alternative
proof, elementary and combinatoric in nature, due to Wielandt (Archive der
Mathematik 10 (1959), 401–402). There are many other proofs of this result.
For a finite group G, Sylow’s Theorems guarantee the existence of subgroups
of all prime-power orders dividing the order of G. This can be viewed as a
kind of partial converse to Lagrange’s Theorem. First recall a result from
our homework, which guarantees the existence of subgroups of prime order
for all primes dividing |G|:

Theorem 10.1 Cauchy’s Theorem Let G be a finite group and p a prime
dividing the order of G. Then G contains an element of order p.

Definition 10.2 Let G be a finite group, p a prime, and write |G| = pam,
(p,m) = 1. A p-subgroup of G (i.e. a subgroup of order a power of p) of
order pa is a Sylow p-subgroup of G.

Theorem 10.3 (Sylow) Let G be a finite group, p a prime, |G| = pam,
(p,m) = 1. Then

1. every p-subgroup of G is contained in a subgroup of order pa (and hence,
since {1} is a p-subgroup, Sylow p-subgroups exist);

2. if np denotes the number of Sylow p-subgroups, then np ≡ 1 (mod p)
and np divides m;

3. any two Sylow p-subgroups are conjugate in G (and hence also isomor-
phic).

Proof. First we show existence of Sylow p-subgroups. Let S denote the set
of all subsets of G with exactly pa elements, and let G act on S by left
multiplication. Notice |S| = (pam)!/[pa!(pam − pa)!]. We claim that this is
not divisible by p. We have

|S| = pam(pam− 1) · · · (pam− pa + 1)

1 · 2 · · · (pa − 1)pa
= m

pa−1∏
i=1

(
pam− i

i
).

45



Consider pam−i
i

, 1 ≤ i < pa. If pj divides i then j < a and pj divides pam− i.
If pj divides (pam− i), then j < a and pj divides (pam− i). Therefore p does
not divide any of the factors pam−i

i
and so does not divide |S|. This implies

there is some orbit of S under the action of G which has order not divisible
by p. Call it S1. Let X ∈ S1 and consider [G : GX ] = |S1|. Then p does not
divide this index, so pa divides |GX |. Now X is a subset of G with exactly pa

elements. Choose x ∈ X. Then |{gx | g ∈ GX}| = |GX |. Since GX stabilizes
X, we must have gx ∈ X for all g ∈ GX . Therefore |GX | ≤ pa = |X|. Thus
|GX | = pa, and we have found a Sylow p-subgroup.

Now let P denote the set of all conjugates of some Sylow p-subgroup P
in G. Then P acts on P by conjugation. The number of elements in an orbit
must be a power of p: [P : Px] = |Ox|. We claim that P is the only element in
P with a singleton orbit. If OP1 = P1, then P1�〈P, P1〉, so PP1 is a subgroup
of order |P ||P1|/|P ∩ P1| = pa, so P = PP1 = P1. Thus |P| ≡ 1 (mod p).
Also |P| = [G : NG(P )] and m = [G : P ] = [G : NG(P )][NG(P ) : P ],
so |P| divides m. We will be done if we can show that any p-subgroup
of G is contained in some group in P (for then any Sylow p-subgroup will
be conjugate to P , and every p-subgroup will be contained in a Sylow p-
subgroup).

Let P ′ be a p-subgroup of G. Suppose P ′ is not contained in some conju-
gate of P . Let P ′ act on P by conjugation. Then there can be no singleton
orbits or, as before, P ′P1 would be a subgroup of order greater than pa, a
contradiction. That says all P ′-orbits in P have order a power of p, and are
not 1. That implies |P| ≡ 0 (mod p), a contradiction. Thus P ′ is contained
in some P1 ∈ P.

Corollary 10.4 G contains subgroups of order pi, 1 ≤ i ≤ a, and any
subgroup of order pi is a normal subgroup of some subgroup of order pi+1,
1 ≤ i ≤ a− 1.

Theorem 10.5 1. If NG(P ) ≤ H ≤ G, then NG(H) = H. In particular,
NG(NG(P )) = NG(P ).

2. If N �G then P ∩N is a Sylow p-subgroup of N and PN/N is a Sylow
p-subgroup of G/N .

Proof. For (1), suppose x ∈ NG(H). Since P ≤ H � NG(H), we have
xPx−1 ≤ H. Then P, xPx−1 are Sylow p-subgroups of H, so there exists
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h ∈ H such that xPx−1 = hPh−1, which implies x−1h ∈ NG(P ) ≤ H, and
so x ∈ H.

For (2), observe that [N : P ∩N ] = [PN : P ] is prime to p, and so since
P∩N is a p-subgroup, it must be a Sylow subgroup. The other case is similar:
[G/N : PN/N ] = [G : PN ] is prime to P , and |PN/N | = |P/(P ∩ N)| is a
prime power.

Applications of Sylow’s Theorems: The bulk of these applications use
the Sylow Theorems to show the existence of nontrivial proper normal sub-
groups, allowing one to show that a group of a given size is not simple. This
can often be extended into an argument to show a group of a given size must
be solvable, or to show that it must be a “semidirect product”, which we will
discuss in Chapter 5. These results often allow complete classification of all
groups of a given order. Prelim problems in group theory often are along
these lines.

1) The quaternion group Q8 is not a subgroup of S5: We know D8 ≤ S4 ≤
S5, and |D8| = 8, |S5| = 120 = 8 · 15. Therefore, since all Sylow 2-subgroups
of S5 must be isomorphic, any subgroup of order 8 must be isomorphic to
D8.

2) A group of order p · qr, q ≥ p, r ≥ 1 is never simple. If q = p, we have
seen that the center is nontrivial, and since the group is not of prime order,
it cannot be an abelian simple group. If q 6= p, then the Sylow q-subgroup is
of index p, which is the smallest prime dividing the order of the group, so it
is a nontrivial proper normal subgroup. Let Q be the Sylow q-subgroup, and
let P be a Sylow p-subgroup. Then by order considerations it is clear that
G = PQ. When we study semidirect products, we will see that this group is a
semidirect product. (Basically, this just means Q�G,G = PQ,P∩Q = {1}).
Now suppose Q is cyclic. Then G must be abelian unless p divides q − 1:
necessarily we have a homomorphism P → Aut(Q) (given by conjugation
by elements of P ) since Q � G, and |Aut(Q)| = qr−1(q − 1). If p does not
divide qr(q − 1), then the homomorphism is trivial, so G is in fact cyclic of
order pqr. If p divides q− 1, then because Aut(Q) is cyclic, there is a unique
subgroup of Aut(Q) of order p, and the map from P to this subgroup gives
rise to a unique (up to isomorphism) nonabelian group of order pqr.

3) Example (2) is a special case of Burnside’s Theorem: A noncyclic
group of order pmqn is never simple. The easiest proof of this result involves
character theory and is beyond the scope of this course. You may NOT cite
Burnside’s Theorem for solving homework exercises!!
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4) There are no simple groups of orders 12 or 28: For order 12, count
the number of Sylow 3-subgroups. By the conditions, there are 1 or 4. If
1, it is normal, so assume there are 4. Then since these groups are of order
3 (prime), they are disjoint except for the identity, so there are 4 · 2 = 8
elements of order 3. Then there are only 4 elements left, and they must
comprise the Sylow 2-subgroup, which is of order 4, and therefore it must be
unique and hence normal. For order 28, the number of Sylow 7-subgroups
must be a divisor of 4 and congruent to 1 (mod 7), and so must be 1, so the
Sylow 7-subgroup is normal.

5) A group of order 28 with a normal subgroup of order 4 is abelian. For
as above, the Sylow 7-subgroup Syl7 is normal. If also the Sylow 2-subgroup
Syl2 is normal, then G ∼= Syl7×Syl2 which is abelian.

6) There are no simple groups of orders 72 or 300. For 72 = 2332: n3 ≡ 1
(mod 3) and n3 divides 8, so n3 = 1 or 4. If n3 = 1, then the Sylow 3-
subgroup is normal. If n3 = 4, then n3 = [G : NG(P )], so G has a subgroup of
index 4, and this induces a homomorphism from G onto a transitive subgroup
of S4, a group of order 24. Thus the kernel of this homomorphism is a
nontrivial proper normal subgroup. For 300 = 52223, we have n5 = 1 or 6.
If 1, we are done. If n5 = 6, then as above we have a homomorphism from
G to a transitive subgroup of S6. Since |S6| = 720 and 300 does not divide
720, this cannot be an injective homomorphism, and the kernel will give the
necessary normal subgroup.

7) A group of order 12 with no element of order 2 in its center is isomorphic
to A4. First we show that n3 = 4. If n3 = 1, then let 〈x〉 be the Sylow
3-subgroup, and observe x has at most two conjugates, x and x2. Thus
[G : CG(x)] ≤ 2, so |CG(x)| = 6 or 12, and thus it contains an element of
order 2, say y. Let Q be a Sylow 2-subgroup containing y. It is of order 4,
therefore abelian. Therefore y lies in the center of 〈Q, x〉 = G, contradicting
our assumption. Thus n3 = 4. Then there are 8 elements of order 3, as in
example (4) above, and the Sylow 2-subgroup is normal. Left multiplication
by G on a Sylow 3-subgroup gives a map G → S4, which is injective since
the Sylow 3-subgroup is not normal and is of prime order (and the kernel
is the largest normal subgroup in the Sylow 3-subgroup). Therefore G is
isomorphic to a subgroup of S4 of order 12, and there is only one.

8) There are no simple groups of order 120 = 23 · 3 · 5. If it were simple,
n5 = 6, and since G can have no nontrivial proper subgroups, the map
G → S6 must be injective. Then G ∩ A6 is normal in G since A6 � S6.
Because G is simple, we have G ∩ A6 = {1} or G. It can’t be 1 (why? –
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think about any subgroup of Sn intersected with An). Then [A6 : G] = 3, so
A6 has a subgroup of index 3. This gives rise to a nontrivial homomorphism
A6 → S3, which means A6 has a nontrivial proper normal subgroup. This is
a contradiction, since A6 is simple.

9) If |G| = 60, then if n5 > 1, G is simple. If G is simple, then n2 =
5, n3 = 10, n5 = 6, and G ∼= A5. These results are proved in the text at the
end of §4.5.

10) If |G| = pqr, p ≤ q ≤ r primes, then G is not simple. We have
already seen this in the case that p, q, r are not distinct primes, except when
|G| = p2q, p < q. Let Q be a Sylow q-subgroup. If Q is not normal, then
nq = p2, since we cannot have p ≡ 1 (mod q), because p < q. Each Sylow q-
subgroup contains q−1 elements of order q, and they must be disjoint except
for the identity. This gives p2q − p2 elements of order q, so the remaining
p2 elements must comprise the Sylow p-subgroup, which must be unique and
hence normal.

Now suppose p < q < r. Then nr = pq or 1, since nr ≡ 1 (mod r). If
nr = pq, there are pq(r − 1) = pqr − pq distinct elements of order r. Now if
nq > 1, then nq > p, giving more than p(q − 1) = pq − p elements of order
q, which leaves less than p elements in the group, which is impossible, since
there must be at least p−1 elements of order p and the identity. Thus nq = 1
and G is not simple.

11) If |G| = 8pn, p an odd prime, then G is solvable. We have np ≡ 1
(mod p) and np divides 8, so either the Sylow p-subgroup P is normal in G
or np = 4, p = 3, or np = 8, p = 7. If P is normal in G, then since P is
solvable (it is a p-group) and G/P has order 8, hence solvable, we know G is
solvable.

If np = 4, p = 3, then we have a map fromG to a transitive subgroup of S4;
let K be the kernel. Then since 4 divides |G/K|, we have |G/K| = 4, 8, 12, 24
and |K| = 2 · 3n, 3n, 2 · 3n−1, 3n−1. G/K is solvable as all subgroups of S4

are, and K is solvable as, in each possible case, the Sylow 3-subgroup of K
is normal in K.

If np = 8, p = 7, then induct on n. If n = 1, then |G| = 56. By counting
elements, there are 8 · 6 = 48 elements of order 7, leaving 8 elements for
the Sylow 2-subgroup, which must then be unique and hence normal. In
general, we have a map G → S8, where G maps onto a transitive subgroup
of S8 of order dividing |G| = 8 · 7n. Thus the order of the image divides 56,
and cannot be 1, 2, 4, 7 as these do not correspond to transitive subgroups of
S8. Thus the image is of order 8, 14, 28, 56, all of which imply the image is
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solvable, and the kernel is of order 7n, 4 · 7n−1, 2 · 7n−1, 7n−1. All of these are
solvable (for the middle two, the Sylow 7-subgroup is normal). Thus G is
solvable.
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