

Lecture outline

- A. Ion exchange
- B. Cation exchange capacity (CEC)
- B. Base cations and base saturation
- C. Exchangeable Al
- D. Anion exchange

Ion exchange reaction:

$$K$$
-clay + $Na^+ \implies Na$ -clay + K^+

- Ion exchange reactions are:
 - Reversible
 - Rapid
 - Stoichiometric

5

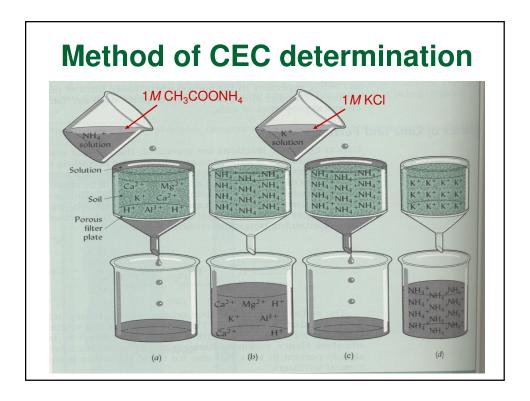
$$K$$
-clay + $Na^+ \longrightarrow Na$ -clay + K^+

If a high number of Na⁺ ions are added, there will be a very high probability of having Na⁺ replace all of the adsorbed K⁺.

This phenomenon is called **mass ion effect**

Exchangeable cations are

those cations which are readily displaced, by mass ion effect, from negatively charged colloids on which they are adsorbed


K-clay + $Na^+ \Longrightarrow Na$ -clay + K^+

Cation exchange capacity

(CEC) - number of exchangeable cations which soil solids can adsorb.

Units: cmol_c/ kg soil

meq / 100 g soil

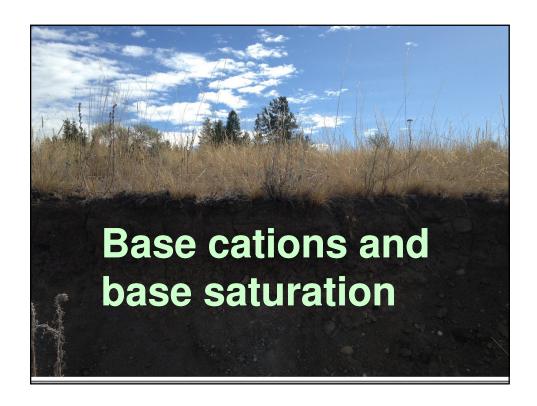
Approximate CEC (cmol_c/kg)

• Kaolinite: 3-15

Montmorillonite: ~100

• Fe, Al oxides (sesquioxides): ~3

• Organic matter (humus): 150-250


• Amorphous minerals: 5-350

11

What is significance of CEC?

- Contributes to soil buffering
- Contributes to nutrient retention in available forms
- Contributes to retention of various contaminants

Such cations as Ca²⁺, Mg²⁺, K⁺, Na⁺ are called **base** (or baseforming) cations

 $Na_2CO_3 + H_2O \Longrightarrow 2Na^+ + HCO_3^- + OH^-$

Base saturation (BS) -

fraction of cations on the cation exchange sites occupied by base cations rather by H⁺ and Al³⁺

$$\%BS = \frac{\Sigma(Ca^{2+} + Mg^{2+} + K^{+} + Na^{+})}{CEC} \times 100$$

Al & soil acidity

$$Al^{3+} + H_2O \Longrightarrow Al(OH)^{2+} + H^+$$

$$AI(OH)^{2+} + H_2O \Longrightarrow AI(OH)_2^+ + H^+$$

$$AI(OH)_2^+ + H_2O \rightleftharpoons AI(OH)_3 + H^+$$

*Minerals like sesquioxides may acquire a pH-dependant (variable) charge

Number of exchangeable <u>anions</u> which soil solids can adsorb is **anion exchange capacity (AEC)**

Example of a positive charge formation on Al-oxide:

$$AI(OH)_3 + H^+ \Longrightarrow AI(OH)_2^+ + H_2O$$

(Mineral gibbsite) (In solution)

(Mineral gibbsite with a positive charge)

19

At high pH this might happen:

Wilá - a negative charge!

$$AI(OH)_3 + OH^- \Longrightarrow AI(OH)_4$$

(Mineral gibbsite) (In solution)