## MATH 312: ASSIGNMENT 4

YOU MAY TURN IN THIS ASSIGNMENT IN TWO INSTALMENTS, ONE DUE ON NOV 17 and THE OTHER ON NOV 24.

1) Find the least nonnegative residue modulo 28 of 12,345 and -54321 .
2) Find the least positive residue of $1!+2!+3!+\cdots+100$ ! modulo 12 and 25 .
3) Show that if $a, b$ and $c$ are integers with $c>0$, such that $a \equiv b \bmod c$, then $(a, c)=(b, c)$.
4) Show that if $a j \equiv b_{j} \bmod m$ for $j=1,2, \cdots m$ where $m$ is a positive integer, then
the products $a_{1} \cdot a_{2} \cdots . a_{j}$ and $b_{1} \cdot b_{2} \cdots . b_{j}$ are congruent modulo $m$.
5) Show by mathematical induction that if $n$ is a positive integer, then $5^{n} \equiv 1+4 n \bmod 16$.
6) Find the least positive residue of $16!\bmod 17$ and $3^{1} 0$ modulo 11 .
7) find all solutions of $2 x+4 y \equiv 6$ modulo 8 .
8) Find an integer that leaves a remainder of 2 when divided by either 3 or 5 , but that is divisible by 4 .
9) What is the multiplicative inverse of 5 modulo 17 ?
10) Solve the following simultaneous system of congruences:
$x \equiv 4 \bmod 6, x \equiv 13 \bmod 15$.
11) What is the highest power of 5 that divides $235,555,790$ and the highest power of 2 that divides $89,375,744$ ?
12) Is 1086320015 divisible by 11 ?
13) Which of $13,19,21$ and 27 divide 2340 ?
14) Using the check digit system described for passports, determine the check digit that should be added to 132999 .
15) Show that $1^{p-1}+2^{p-1}+\cdot+(p-1)^{p-1} \equiv-1 \bmod p$.
16) Show that if $n$ is an odd composite integer pseudoprime to the base $a$, then $n$ is a pseudoprime to the base $n-a$.

Math 501, Fall 2010
Final, page 2/2
17) Use the Pollard method to find a divisor of $7,331,117$. (You may use a computer).
18) Show that 1387 is a pseudoprime, but not a strong pseudoprimt to the base 2 .
19) Check (by factoring and using the criterion) hat $321,197,185$ is a Carmichael number.
20) Find a reduced residue system modul0 14 .

