1 Solutions to assignment 6, due June 23rd

Problem 10.2 We have that A and C are disjoint, since $A \subset \mathbb{R}_{>0}$ and $C \subset \mathbb{R}_{<0}$. Moreover, as each of these sets are denumerable ${ }^{1}$, we have bijective functions $\mu_{A}: \mathbb{N} \rightarrow A$ and $\mu_{C}: \mathbb{N} \rightarrow C$. Define then the function $\mu: \mathbb{N} \rightarrow A \cup C$ via

$$
n \mapsto \begin{cases}\mu_{A}\left(\frac{n+1}{2}\right) & \text { if } n \text { is odd } \\ \mu_{C}\left(\frac{n}{2}\right) & \text { if } n \text { is even }\end{cases}
$$

I claim that this function is bijective.
First, suppose that $\mu(n)=\mu(m)$. Then n and m are either both even or odd (since A, C are disjoint). So suppose that $m=2 k, n=2 \ell$. Then we have

$$
\mu_{C}(k)=\mu(2 k)=\mu(2 \ell)=\mu_{C}(\ell) .
$$

But since μ_{C} is injective, it follows that $k=\ell$, and thus that $n=m$. The case that n, m are both odd is dealt with similarly.
I now claim that μ is surjective. Let $x \in A$. Then there is some $n \in \mathbb{N}$ with $\mu_{A}(n)=x$, since μ_{A} is surjective. However, this implies that $\mu(2 n+1)=\mu_{A}(n)=x$. Similarly, let $y \in C$. Then there is some $m \in \mathbb{N}$ such that $\mu_{C}(m)=y$ (due again to surjectivity). Thus $\mu(2 m)=\mu_{C}(m)=y$. Together these imply that μ is surjective as claimed, and thus that it is bijective.

Problem 10.3 Given

$$
S=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{n^{2}+\sqrt{2}}{n}\right. \text { for some } n \in \mathbb{N}\right\}
$$

and $f: \mathbb{N} \rightarrow S$ given by $n \mapsto \frac{n^{2}+\sqrt{2}}{n}$.
(a) The elements $1+\sqrt{2}, \frac{4+\sqrt{2}}{2}$, and $\frac{9+\sqrt{2}}{3}$ are all in S.
(b) The function f is injective, since if $f(n)=f(m)$ we would have

$$
n+\frac{\sqrt{2}}{n}=m+\frac{\sqrt{2}}{m}
$$

or, rearranging,

$$
n-m=\sqrt{2}\left(\frac{n-m}{n m}\right) .
$$

If we had that $n \neq m$, then we could rewrite this last eqution as $\sqrt{2}=n m$ for these two integers n, m, which is clearly absurd.
(c) This is onto; let $x \in S$. Since $x=\frac{n^{2}+\sqrt{2}}{n}$ for some integer n, it follows that $f(n)=x$.
(d) Since the function f is bijective, it follows that S is denumberable.

[^0]Problem 10.4 The function f is defined by

$$
f(n)=\frac{1+(-1)^{n}(2 n-1)}{4}
$$

We first show that it is injective.
Suppose first that $f(n)=f(m)$. Then this is equivalent (after some simplification) $(-1)^{n}(2 n-1)=(-1)^{m}(2 m-1)$. This implies that n, m are both of the same parity (i.e. both even or both odd), and so we can cancel the $(-1)^{n}$ and $(-1)^{m}$. Thus we find the $f(n)=f(m)$ if and only if $2 n-1=2 m-1$ which is if and only if $n=m$, and so f is injective.
So to show surjectivity, note that for $n=2 k$, we find that $f(n)=\frac{1+(4 k-1)}{4}=k$, and for $n=2 k+1$ that $f(n)=\frac{1-(4 k+1)}{4}=-k$. Thus it is clear that for any positive integer k, that $f(2 k)=k$, and for any non-negative integer ℓ (i.e. $\ell \leq 0$), that $f(-2 \ell+1)=\ell$, and so the function is surjective.

Problem 10.6 We can say that either A is finite, or A is denumerable itself. This is since $A=$ $\bigcup_{b \in B} f^{-1}(b)$. Since each $f^{-1}(b)$ is either empty or a one element set, and since B is denumerable, it follows that A is the (at most countable) union of single points. Thus A must be denumerable.

Problem 10.8 We will first prove the following lemma.
Lemma 1.1 Let $A=\bigcup_{i \in \mathbb{N}} A_{i}$ with $A_{i} \cap A_{j}=\emptyset$ and each A_{i} finite. Then A is countable.
Proof Write each set A_{i} as $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots a_{i, c_{i}}\right\}$ with $\left|A_{i}\right|=c_{i}$. Then we can write A as the list

$$
A=\left\{a_{1,1}, a_{1,2}, \ldots, a_{1, c_{1}}, a_{2,1}, a_{2,2}, \ldots a_{2, c_{2}}, a_{3,1}, \ldots\right\}
$$

It is clear that this list is equal to all of A, and hence by the lemma from class, that A is countable.

We will show that $S=\{(i, j) \in \mathbb{N} \times \mathbb{N} \mid i \leq j\}$ is a countable union of finite sets.
For each $j \in \mathbb{N}$, let $S_{j}=\{(i, j) \mid i \leq j\}$. Then clearly it is the case that $S=$ $\bigcup_{j \in \mathbb{N}} S_{j}$. Moreover, we have that $\left|S_{j}\right|=j$ for each j (since they consist of the elements $\{(1, j),(2, j), \ldots,(j-1, j),(j, j)\})$. Thus S is the countable union of finite sets as in the lemma, and so it is countable.

Problem 10.10 We consider the chain of maps

$$
\mathbb{N} \times \mathbb{N} \xrightarrow{g} \mathbb{Z} \times \mathbb{Z} \xrightarrow{h} \mathcal{G}
$$

given by $g(n, m)=(f(n), f(m))$ (where f is given in problem 10.4), and $h(a, b)=a+b i$. These are both bijections, so it remains to show that $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$.
Consider $N_{k}=\{(i, j) \in \mathbb{N} \times \mathbb{N} \mid i+j=k\}$. For example, $N_{4}=\{(3,1),(2,2),(1,3)\}$. It is clear that $\bigcup_{k \in \mathbb{N}} N_{k}=\mathbb{N}$, and moreover that $\left|N_{k}\right|=k-1$ and so is finite. Thus $\mathbb{N} \times \mathbb{N}$ is countable as desired, and so we have that \mathcal{G} is as well.

Problem 10.14 (a) We show that $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\}$ is bijective by showing that it has an inverse. Consider the function $g: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{1\}$ given by $g(x)=\frac{x}{x-2}$. Then

$$
f(g(x))=\frac{2 \frac{x}{x-2}}{\frac{x}{x-2}-1}=\frac{2 x}{x-(x-2)}=\frac{2 x}{2}=x
$$

and

$$
g(f(x))=\frac{\frac{2 x}{x-1}}{\frac{2 x-2}{x-1}-2}=\frac{2 x}{2 x-2(x-1)}=\frac{2 x}{2}=x .
$$

Since these functions are inverses of each other, it follows that f is bijective.
(b) As there is a bijective function from one to the other, it follows by definition that $|\mathbb{R}-\{1\}|=|\mathbb{R}-\{2\}|$.

Problem 10.15 Suppose to the contrary that the set \mathfrak{I} of all irrational numbers is countable. Then it would follow that $\mathbb{R}=\mathbb{Q} \cup \mathfrak{I}$ is the union of two countable sets, and so it would also be countable. As \mathbb{R} is uncountable, this is a contradiction.

Problem 10.18 (a) The function $f:(0,1) \rightarrow(0,2)$ given by $x \mapsto 2 x$ is injective, since if $f(x)=f(y)$ we would have $2 x=2 y \Longleftrightarrow x=y$. It is surjective, since for any $r \in(0,2)$ we have that $\frac{r}{2} \in(0,1)$. Since $f\left(\frac{r}{2}\right)=r$, it follows that f is also surjective.
(b) These sets have the same cardinality since there is a bijective function between the two of them.
(c) We will exhibit a bijective function $g:(0,1) \rightarrow(a, b)$.

Define g by

$$
x \mapsto(b-a) x+a
$$

It is easy to see (See part (a)) that this is injective, and similarly that it is surjective. So $|(0,1)|=|(a, b)|$.
Problem 10.19 (a) This is false. $\mathcal{P}(\mathbb{R})$ is uncountable, but $|\mathcal{P}(\mathbb{R})|>|\mathbb{R}|$.
(b) This is false, since \mathbb{Q} is countable, as it would imply that \mathbb{R} is also countable.
(c) This is true. Subsets of denumberable sets are either finite or denumberable themselves. Since B has a denumerable subset, it cannot be finite, and so it is denumerable.
(d) This is true. We can define $f: \mathbb{N} \rightarrow S$ by $n \mapsto \frac{\sqrt{2}}{n}$. This is a bijection.
(e) This is true. Consider the set S from (d); as $\sqrt{2}$ is irrational, so is $\frac{\sqrt{2}}{n}$. Thus S is a set of irrational numbers, and as seen before, it is denumerable.
(f) This is false. \mathbb{R} is uncountable, and so cannot be a subset of a denumerable set.
(g) This is false. Consider the inclusion of the set $A=\{1\}$ into the set $B=\{1,2\}$ (i.e the function which maps $1 \mapsto 1$). This function is injective, but $|A|=1$ and $|B|=2$.

Problem 10.22 (a) The set B in this instance is $B=\{a, c\}=A_{d}$ (since $A_{a}=\emptyset$, and $a \notin \emptyset$, etc.)
(b) This set illustrates that none of a, b, or c map under the function g to B i.e. that B is not in the image of g, and so $|\mathcal{P}(A)|>|A|$.

[^0]: ${ }^{1}$ Why is C denumerable?

