Biology Lab 1 Extraction of Macro and Mesofauna from Soil & Assessment of Activity

Sue Grayston
Applied Biology Program Director
Faculty of Forestry & Faculty of Land & Food
Systems
(sue.grayston@ubc.ca)

Macrofauna (molluscs, earthworms, millipedes, insect larvae cm's)

Movers & Shakers

Responsible for soil mixing. Large enough to disrupt soil structure.

Litter Transformers – ingest litter

Ecosystem Engineers – build physical structures

Macrofauna (ants, centipedes, beetles, spiders cm's)

Centipedes, spiders, beetles predatory - feed on other
smaller fauna
Ants primarily carnivores but
very important soil mixers

Earthworm bioturbation

Meso fauna (collembola, mites, tardigrades,

enchytraeids 200 µm - 1cm)

Fragment debris and promote soil structure

Enchytraeids - small 'pot' worms - mainly bacterial and fungal feeders Mites - litter decomposers, fungal feeders, predators Collembola - litter and fungal feeders

Tardigrades - litter and faunal (nematode) feeders

Meso fauna (pauropods, copepods 200 μm - 1cm)

Pauropods - small relatives of centipedes, live on detritus, fungi, bacteria & litter

Copepods - usually considered to be aquatic crustaceans, live on bacteria

Diplura – fungi, mites, Symphyla collembolan, litter Fungal hy

Symphyla Pseudosco Fungal hyphae, roots ants, mites

Pseudoscorpion –larvae, ants, mites

Microfauna (Protozoa, Nematodes <200 μm)

Confined to water films regulate soil microbes
Protozoa - litter decomposers
and bacterial feeders
Nematodes - bacterial, fungal,
plant feeders, insect pathogens

Biodiversity How do we measure it?

- Macro fauna
- > Pit-fall traps. Identification by morphology

D-vac

Soil blocks

Meso and micro fauna

- > Extraction from soil samples using funnels, wet-sieving, flotation methods.
- Identification by morphology, microscopy and for micro fauna increasingly by molecular fingerprinting
- Diversity of soil fauna remains an enigma – also belowground food web and trophic interactions

Soil meso-faunal diversity in CWH forest

■ 32,000 mites identified: 92 mite species; 303,300 individuals m⁻²

- > 10,000 collembolans identified: 42 species; 83,500 m⁻²
- Pauropods abundant: 3,637 m⁻²
- <5% meso-fauna in mineral soil</p>

Mesostigmata

Prostigmata

Analysis of faunal NLFA to ascertain diet

Outline

Skills

Collect and extract macro- and meso-fauna from soil samples; Identify fauna using keys

Objectives:

- To isolate, observe and quantify soil macro- and meso-fauna. To calculate species diversity, richness and evenness.
- > To evaluate feeding activity of soil fauna using bait strips

Soil Fauna

Methods

- Collect and extract macro- and meso-fauna from soil samples
- Use hand-sorting to extract macro-fauna from soil
- Identify macro-fauna using keys
- Use Berlese-Tullgren funnel to extract meso-fauna from soil
- Incubate funnels for 1 week under lights
- Identify meso-fauna using binocular microscope (will be week 2)
- Calculate faunal species richness, diversity and evenness
- Incubate bait-lamina strips in soil for 1 week
- Evaluate feeding activity of soil fauna (week 2)

Bait-lamina strips

Cellulose, bran flakes, coal

Richness, diversity and evenness

- 1. Calculate richness by summing the total of organism groups.
- 2. Calculate species diversity (H') using the Shannon Index:

H' = - Σ [p_i* ln (p_i)] p_i is the proportion of all observed organism groups

3. Using the H' from the other groups, calculate evenness of the communities:

$$E = H' / H'_{max}$$

	Species	Abundance	Proportion (p _i)	- p _i * ln (p _i)
	Mites	50	0.5	0.347
	Springtails	30	0.3	0.361
	Isopods	10	0.1	0.230
	Millipedes	9	0.09	0.217
	Spider	1	0.01	0.046
Total	5	100	1.00	1.201 (H')

Faunal videos

Soil Biology (Microfauna) Terry Tollefson Tardigrades are the toughest animal www.globalsoilbiodiversity.org/videos

Lecture - Today

Microbial activity at the root-soil interface of a coniferous forest soil - response to seasonal changes of plant activity

Speaker: Petr Baldrian, Czech Academy of Sciences, Prague

Date & location: Friday Nov 1, 3:00-4:00 pm McMl 154

