ASSIGNMENT 5

DUE DATE: NOV 29, 2011
i) Let ζ be a primitive p th root of unity, where p is a prime divisor of $2^{n}+1$ (for some $n \geq 1$). Show that $E=\mathbb{Q}(\zeta)$ is a splitting field of the quaternion algebra $\frac{(-1,-1)}{\mathbb{Q}}$. (Hint: Verify the identity $\Pi\left(1+\zeta^{2^{k}}\right)=-\zeta^{2^{n}}$, where the product varies from $k=0$ to $n-1$, and note that the LHS is a sum of two squares in E.)
ii) Recall that a quaternion algebra $A=\frac{(a, b)}{F}$ over a field F of characteristic not 2 is the central simple algebra with F-basis $\{1, i, j, k\}$ such that $i^{2}=a$ and $j^{2}=b, i j=-j i$. The map $x \rightarrow \bar{x}$ which sends $(a+b i+c j+d k)$ to $(a-b i-c j-d k)$ defines a symmetric bilinear from A to F whose associated quadratic form is $x \mapsto B(x, x)=N(x):=x \bar{x}$. This is called the norm form on A. Prove that this norm form is isometric to $\langle 1,-a,-b, a b\rangle$.
iii) Prove that the quaternion algebras $A=\frac{(a, b)}{F}, \frac{\left(a^{\prime}, b^{\prime}\right)}{F}$ are isomorphic iff their associated norm forms are isometric.
iv) Show that the quaternion alegbras $(-1,-1)$ and $(-2,-3)$ are isomorphic over \mathbb{Q}.. For an odd prime p show that $(-2, p)$ splits iff $p \equiv 1$ or $3 \bmod 8$.
v) Let $\left.A=\frac{(a, b)}{F}\right)$ and let $K=F(\sqrt{c})$. Prove that A splits over K iff the norm form of A is isometric to $<1,-c,-d, c d>$ for some d in F^{\times}.

