ASSIGNMENT 5

DUE DATE: NOV 29, 2011

i) Let ζ be a primitive *p*th root of unity, where *p* is a prime divisor of $2^n + 1$ (for some $n \ge 1$). Show that $E = \mathbb{Q}(\zeta)$ is a splitting field of the quaternion algebra $\frac{(-1,-1)}{\mathbb{Q}}$. (Hint: Verify the identity $\prod(1+\zeta^{2^k}) = -\zeta^{2^n}$, where the product varies from k = 0 to n-1, and note that the LHS is a sum of two squares in *E*.)

ii) Recall that a quaternion algebra $A = \frac{(a,b)}{F}$ over a field F of characteristic not 2 is the central simple algebra with F-basis $\{1, i, j, k\}$ such that $i^2 = a$ and $j^2 = b$, ij = -ji. The map $x \to \bar{x}$ which sends (a + bi + cj + dk) to (a - bi - cj - dk) defines a symmetric bilinear from A to F whose associated quadratic form is $x \mapsto B(x, x) = N(x) := x\bar{x}$. This is called the norm form on A. Prove that this norm form is isometric to < 1, -a, -b, ab > .

iii) Prove that the quaternion algebras $A = \frac{(a,b)}{F}$, $\frac{(a',b')}{F}$ are isomorphic iff their associated norm forms are isometric.

iv) Show that the quaternion algebras (-1, -1) and (-2, -3) are isomorphic over \mathbb{Q} . For an odd prime p show that (-2, p) splits iff $p \equiv 1$ or $3 \mod 8$.

v) Let $A = \frac{(a,b)}{F}$ and let $K = F(\sqrt{c})$. Prove that A splits over K iff the norm form of A is isometric to < 1, -c, -d, cd > for some d in F^{\times} .