

Bacterial Pathogenesis

Case 3 | Path 417 | Abigail Ngan

Case Summary

Tom and his family went on a cruise to celebrate his retirement. Tom enjoyed the various hot tubs aboard the massive ship in the first few days, relishing the relaxation after a busy final year at work. On the fifth day, Tom wakes up in a sweat with a cough that continues throughout the day. This was followed by headache, muscle aches, and nausea. A doctor examines Tom and notes his high temperature, nonproductive cough, and recent history of asthma and corticosteroid therapy resulting in a pneumonia diagnosis. She starts Tom on azithromycin. By the time the ship returns to port two days later, 5 more people have been diagnosed with a similar pneumonia, several of whom have a slightly compromised immune system, as Tom does. One of the others is admitted to hospital, where sputum and urine samples are tested and reveal a diagnosis of Legionellosis.

Encounter

Entry

Multiplication and Spread

Bacterial Damage

Encounter

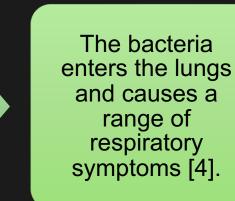
Geographic distribution, Location in host, Bacterial characteristics

Geographic distribution of Legionella spp.

Legionella spp. contains 58 species and 3 subspecies. These bacteria inhabit natural and anthropogenic aquatic environments [1,2].

Natural

Ex: Lakes, rivers, groundwater, compost, and soil [2]


Anthropogenic

Ex: Water fountains, plumbing systems, bathtubs, air humidifiers, and hot tubs [2]

Location in the human host

Legionella spp. reside in the lungs of humans. [2]

Humans can become infected with *Legionella* spp. when they inhale contaminated water droplets [3].

In the lungs, *Legionella* spp. infects alveolar macrophages and localizes there [4].

The bacteria prevent fusion of phagosomes and lysosomes so they do not have a need to keep moving around [4]

Bacterial characteristics

Legionella spp. exhibit strong pleomorphism and may become rod-shaped, coccoid, or filamentous in response to different environmental factors [2].

survive in temperatures between 0 and 68°C with the optimum growth temperature being around 35°C [2]; (hot tub temperatures don't exceed 40°C) [5] produce multispecies biofilms, complex interspecies microbiome structures that adhere to the surface, which enable high resistance to environmental factors [2,6] infect freshwater protozoa, phagocytic monocytes, and alveolar macrophages via their hydrophobic cell surface and their less toxic lipopolysaccharide (LPS) which enables environmental resistance and provides a protected environment for multiplication [2,7,8,9]

exist extracellularly through physiological, morphogenic, and metabolic changes that facilitate intra/extracellular transitions allowing them to become motile, stressresistant, and transmissible [7]

Host contact, Mechanisms of entry and adherence from the bacterium and host

Host contact

Human exposure to Legionella most frequently occurs during **aquatic recreational activity** [2].

- Tom likely encountered the bacteria in the hot tub, most likely through inhalation of contaminated bioaerosols, by consumption, or direct exposure to contaminated water [2].
- Tom's weakened immune system may have made him more susceptible to infection.

The hydrophobic side chains of *Legionella* contribute to its ability to distribute in aerosols [9]. When inhaled as an aerosol, they are engulfed by human alveolar macrophages and replicates in them [7].

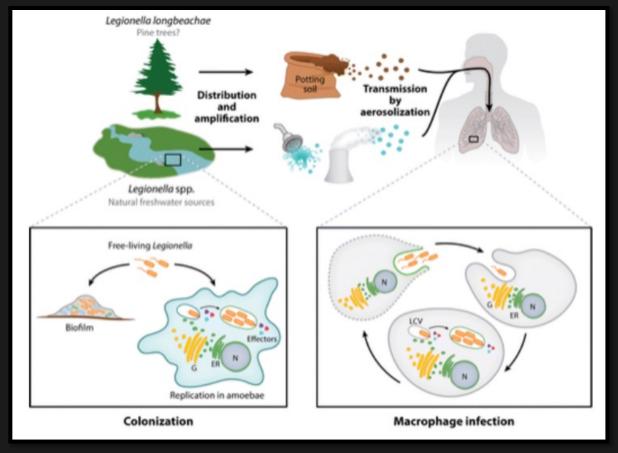
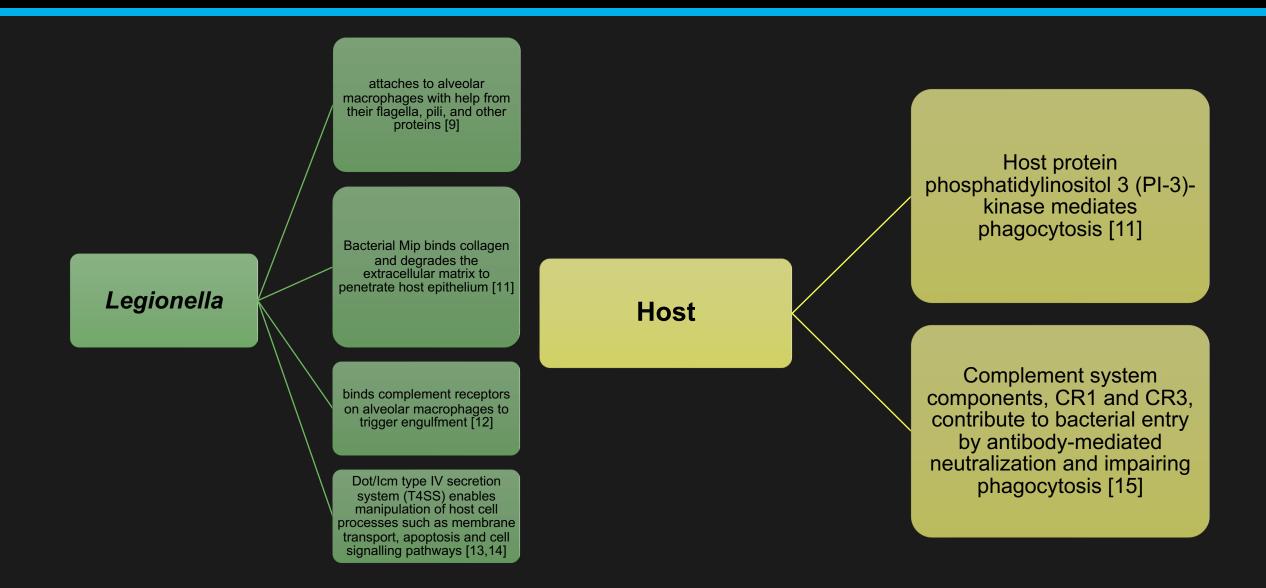
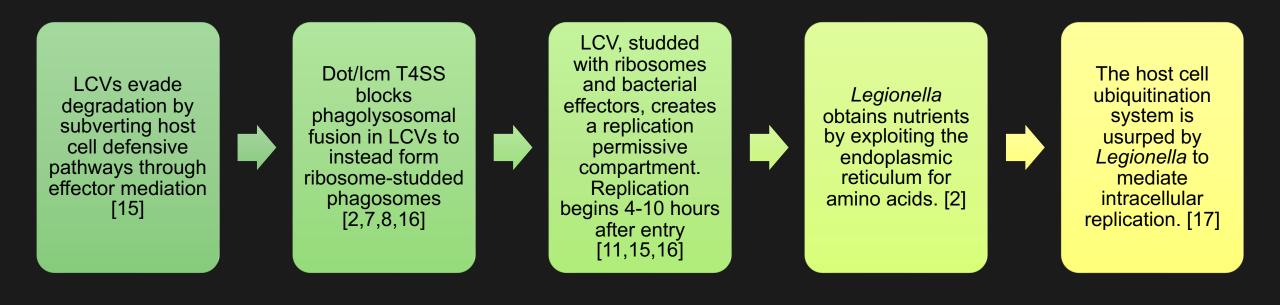



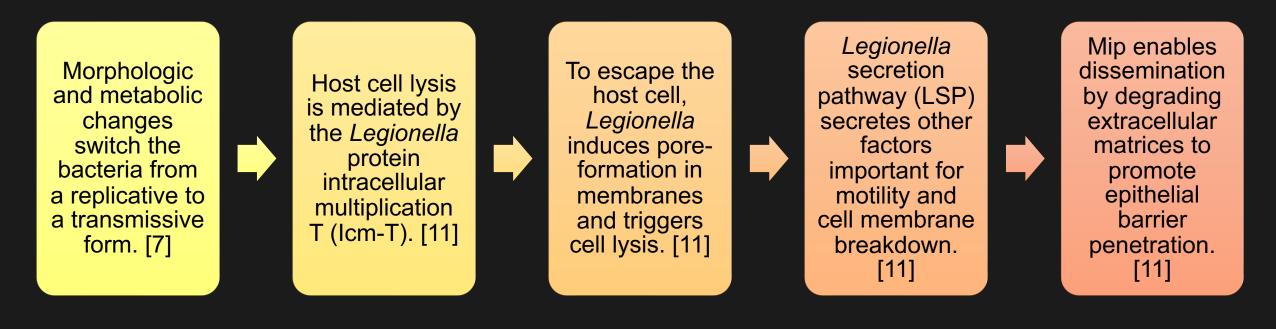
Figure 1. *Legionella* sp. transmission and life cycle [10]

Mechanisms of entry and adherence from the bacterium and host



Multiplication and Spread

Bacterial location after infection, Secondary infection sites


Bacterial location after infection

Legionella spp. enter human alveolar macrophages and replicates in them [11]. They exist inside vacuoles of these cells and are called *Legionella*-containing vacuoles (LCVs). [15]

Bacterial location after infection

After intracellular replication in LCVs, *Legionella* induces cytotoxicity and host cell lysis in response to nutrient depletion. [8]

Secondary infection sites

Secondary infection might be due to:

- direct invasion into the muscle
- release of endotoxin into circulation that causes muscle injury
- due to its ability to invade host immune cells, cells that usually travels extensively throughout the body. [18,19,20]

Secondary infection sites include the following: [12,21,22]

spleen		kidney		liver	
skeletal muscle		heart		Skin	
	soft tissues		brain		

Bacterial Damage

Damage to the human host

Damage to the human host

Bacterial damage to the human host primarily occurs in the lungs.

Alveolar and tissue destruction

due to neutrophil and monocytemediated damage and bacterial enzymes [12]

Inflammation

leading to symptoms such as cough, fever, and chest pain. [12]

Compromised gas exchange and respiratory function

induces reactive oxygen species (ROS), type I interferon (IFN), NFκB activation of proinflammatory cytokines, and the mitogen-activated protein kinase (MAPK) pathway [12,23]

Protease-mediated tissuedestruction

Via zinc metalloprotease, ProA, that directly damages the lung tissue [15,24].

Secondary lung abscesses

necrosis and cavitation of the lung tissue in immunocompromised individuals [15,25].

Acute respiratory distress syndrome (ARDS)

severe case of *Legionella* spp. infection that requires mechanical ventilation [26]

References

- 1. Cunha BA, Burillo A, Bouza E. Legionnaires' disease. Lancet. 2016;387(10016):376-385. doi:10.1016/S0140-6736(15)60078-2
- 2. Kanarek P, Bogiel T, Breza-Boruta B. Legionellosis risk-an overview of Legionella spp. habitats in Europe. Environ Sci Pollut Res Int. 2022 Nov;29(51):76532-76542. doi: 10.1007/s11356-022-22950-9.
- 3. Girolamini L, Mazzotta M, Lizzadro J, et al. Sit bath systems: A new source of Legionella infection. PLoS One. 2020;15(11):e0241756.
- 4. Ziltener P, Reinheckel T, Oxenius A. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS. PLoS Pathog. 2016;12(4):e1005591.
- 5. CDC Centers for Disease Control and Prevention. Hot Tubs [Internet]. CDC Centers for Disease Control and Prevention; 2022 Apr 2. Available from: https://www.cdc.gov/healthywater/swimming/swimmers/hot-tub-user-information.html
- 6. Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: An emerging battleground in Microbial Communities. Antimicrobial Resistance & Infection Control 8
- 7. Oliva G, Sahr T, Buchrieser C. The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism. Front Cell Infect Microbiol. 2018 Jan 19;8:3. doi: 10.3389/fcimb.2018.00003.
- 8. Lau HY, Ashbolt NJ. The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol. 2009 Aug;107(2):368-78. doi: 10.1111/j.1365-2672.2009.04208.x.
- 9. Legionella and Coxiella. In: Ryan KJ. eds. Sherris & Ryan's Medical Microbiology, 8e. McGraw Hill; 2022. Accessed March 09, 2023. https://accessmedicine.mhmedical.com/content.aspx?bookid=3107§ionid=260928232
- 10. Mascarenhas DP, Zamboni DS. Inflammasome biology taught by Legionella pneumophila. J Leukoc Biol. 2017 Apr;101(4):841-849. doi: 10.1189/jlb.3MR0916-380R.
- 11. Newton HJ, Ang DK, van Driel IR, Hartland EL. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev. 2010 Apr;23(2):274-98. doi: 10.1128/CMR.00052-09.
- 12. Winn WC Jr. Legionella. In: Baron S, editor. Medical Microbiology [Internet]. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
- 13. Meir A, Macé K, Lukoyanova N, et al. Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat Commun. 2020;11(1):2864. Published 2020 Jun 8. doi:10.1038/s41467-020-16681-z

References

- 14. Ge J, Shao F. Manipulation of host vesicular trafficking and innate immune defence by legionella Dot/Icm effectors. Cellular microbiology. 12/01/2011;13(12):1870-1880. doi: 10.1111/j.1462-5822.2011.01710.x.
- 15. Chauhan D, Shames SR. 2021. Pathogenicity and virulence of legionella: Intracellular replication and host response. Virulence 12:1122–1144.
- 16. Isberg RR, O'Connor TJ, Heidtman M. 2008. The legionella pneumophila replication vacuole: Making a cosy niche inside host cells. Nature Reviews Microbiology 7:13–24.
- 17. Khweek AA, Amer A. 2010. Replication of legionella pneumophila in human cells: Why are we susceptible? Frontiers in Microbiology 1.
- 18. Iliadi V, Staykova J, Iliadis S, Konstantinidou I, Sivykh P, Romanidou G, Vardikov DF, Cassimos D, Konstantinidis TG. 2022. Legionella pneumophila: The journey from the environment to the blood. Journal of Clinical Medicine 11:6126.
- 19. Wagner C, Khan AS, Kamphausen T, Schmausser B, Ünal C, Lorenz U, Fischer G, Hacker J, Steinert M. 2007. Collagen binding protein MIP enables legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. Cellular Microbiology 9:450–462
- 20. Delicata M, Banerjee A. A rare presentation of Legionnaires' disease. BMJ Case Rep. 2015 Jul 1;2015:bcr2013201337. doi: 10.1136/bcr-2013-201337.
- 21. Chitasombat MN, Ratchatanawin N, Visessiri Y. Disseminated extrapulmonary Legionella pneumophila infection presenting with panniculitis: case report and literature review. BMC Infect Dis. 2018 Sep 17;18(1):467. doi: 10.1186/s12879-018-3378-0.
- 22. Khan A, Borum M. American Journal of Gastroenterology. 2018; 113 S1242.
- 23. Krakauer T. Inflammasomes, Autophagy, and Cell Death: The Trinity of Innate Host Defense against Intracellular Bacteria. Mediators Inflamm. 2019 Jan 8;2019:2471215. doi: 10.1155/2019/2471215.
- 24. Scheithauer L, Thiem S, Schmelz S, et al. Zinc metalloprotease ProA of Legionella pneumophila increases alveolar septal thickness in human lung tissue explants by collagen IV degradation. Cell Microbiol. 2021;23(5):e13313. doi:10.1111/cmi.13313
- 25. Baron RM, Baron BW, Barshak M. Lung Abscess. In: Loscalzo J, Fauci A, Kasper D, Hauser S, Longo D, Jameson J. eds. Harrison's Principles of Internal Medicine, 21e. McGraw Hill; 2022. Accessed March 10, 2023. https://accessmedicine-mhmedical-com.ezproxy.library.ubc.ca/content.aspx?bookid=3095§ionid=265415202
- 26. Kashif M, Patel R, Bajantri B, Diaz-Fuentes G. Legionella pneumonia associated with severe acute respiratory distress syndrome and diffuse alveolar hemorrhage A rare association. Respir Med Case Rep. 2017;21:7-11. Published 2017 Mar 14. doi:10.1016/j.rmcr.2017.03.008