1 Solutions to assignment 4, due June 9th

Problem 1.3 (a) The cardinality of $\{1, 2, 3, 4, 5\}$ is 5.

- (b) The cardinality of $\{0, 2, 4, ..., 20\}$ is 11 (don't forget that we start counting at 0!).
- (c) The cardinality of {25, 26, 27, ..., 75} is 51 (Similar here. Don't forget the end points!).
- (d) The cardinality of $\{\{1,2\},\{1,2,3,4\}\}$ is 2.
- (e) The cardinality of $\{\emptyset\}$ is 1.
- (f) The cardinality of $\{2, \{2, 3, 4\}\}$ is also 2.

Problem 1.5 (a) If $A = \{-1, -2, -3, ...\}$, then we can write

$$A = \{ x \in \mathbb{Z} \mid x < 0 \}.$$

(b) If $B = \{-3, -2, ..., 3\}$ then we can also write

$$B = \{ x \in \mathbb{Z} \mid |x| < 4 \}.$$

(c) If $C = \{-2, -1, 1, 2\}$ then we can write this as

$$C = \{ x \in \mathbb{Z} \mid |x| \le 2 \text{ and } x \ne 0 \}.$$

Note that each of these can be written in many other ways.

- Problem 1.6 (a) We have $A = \{\dots, -5, -3, -1, 1, 3, 5, \dots\}$. (b) We have $B = \{\dots, -8, -4, 0, 4, 8, 12, \dots\}$. (c) We have $C = \{\dots, -5, -2, 1, 4, 7, 10, \dots\}$.
- Problem 1.8 (a) If we let $A = B = \emptyset$, and $C = \{0\}$, then we have $A \subseteq B \subsetneq C$.
 - (b) If we choose $A = \emptyset$, $B = \{\emptyset\}$, and $C = \{\{\emptyset\}\}$, then we have $A \in B$ and $B \in C$, but $A \notin C$.

(c) If we choose this time $A = \emptyset$, and $B = C = \{\emptyset\}$ then $A \in B$ and $A \subsetneq C$.

Note that examples that are simple are easy to understand!

Problem 1.10 If we work these out, we see that $A = B = D = E = \{-1, 0, 1\}$, but that $C = \{0, 1\}$.

Problem 1.13 We have that $\mathcal{P}(\{0, \{0\}\}) = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\}\}\}$. Note that as we expected, $|\mathcal{P}(A)| = 2^{|A|}$.

Problem 1.14 We find that $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}, \text{ and so } \mathcal{P}(\mathcal{P}(A)) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\}$. Thus $|\mathcal{P}(\mathcal{P}(\{1\}))| = 4.$

Problem 1.15 We expect that $|\mathcal{P}(A)| = 8$, as |A| = 3. Writing out all possible subsets, we find

$$\mathcal{P}(A) = \left\{ \emptyset, \{0\}, \{\emptyset\}, \{\{\emptyset\}\}, \{0,\emptyset\}, \{0,\{\emptyset\}\}, \{\emptyset,\{\emptyset\}\}, \{0,\emptyset,\{\emptyset\}\} \right\} \right\}$$

which verifies our expectation.

Problem 1.16 Recall that if $S \subset \mathcal{P}(A)$, then S is a set of subsets of A.

- (a) We need any subset of $\mathcal{P}(\mathbb{N})$, so we consider $S = \emptyset$. Simple!
- (b) If $S \in \mathcal{P}(\mathbb{N})$, then $S \subseteq \mathbb{N}$. So consider again $S = \emptyset$.
- (c) We can't resort to such trickery this time. So we choose this time $S = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\}$.
- (d) Similarly, we choose $S = \{1, 2, 3, 4, 5\}$.

Problem 1.18 (a) Consider $A = \emptyset$, $B = \{\emptyset\}$, and $C = \{1\}$. Then all conditions are satisfied.

- (b) Consider this time $A = C = \{\{0\}, 0\}$, and $B = \{0\}$. Then $B \in A$, $B \subsetneq C$, and $A \cap C \neq \emptyset$.
- (c) Consider $A = \{\emptyset\}$, and $B = C = \{\{\emptyset\}\}$. Then $A \in B, B \subseteq C$, but $A \notin C$.

As stated before, remember, simple examples are better!

Problem 1.19 We choose $A = \{0, 1\}$, $B = \{0, 2\}$, and $C = \{1, 2\}$. Then we have that $B - A = \{2\} = C - A$, but $B \neq C$.

Problem 1.24 We have that $A = \left\{ \emptyset, \{\emptyset\}, \{\{\emptyset\}\} \right\}$.

- (a) We have that $\emptyset \in A$, and that $\{\emptyset\} \in A$.
- (b) |A| = 3.
- (c) We have $\emptyset \subseteq A$ (since the empty set is a subset of every set), $\{\emptyset\} \subseteq A$ (Since $\emptyset \in A$), and also that $\{\emptyset, \{\emptyset\}\} \subseteq A$, since both of the elements are elements of A.
- (d) $\emptyset \cap A = \emptyset$. This is true regardless of what A is.
- (e) $\{\emptyset\} \cap A = \{\emptyset\}.$
- (f) $\{\emptyset, \{\emptyset\}\} \cap A = \{\emptyset, \{\emptyset\}\}$, since this is a subset of A (and so its intersection with A is itself).
- (g) $\emptyset \cup A = A$. Again, this is true regardless of what A is.
- (h) $\{\emptyset\} \cup A = A$, since the former set is a subset of A.
- (i) $\{\emptyset, \{\emptyset\}\} \cup A = A$ for the same reason.
- Problem 1.27 Given $A = \{1, 2, 5\}$, $B = \{0, 2, 4\}$, and $C = \{2, 3, 4\}$, and also $S = \{A, B, C\}$ (so that S is the set whose elements are the sets A, B, C), we have that

$$\bigcup_{X \in S} X = A \cup B \cup C = \{1, 2, 3, 4, 5\}$$

and that

$$\bigcap_{X \in S} = A \cap B \cap C = \{2\}.$$

Problem 1.41 If $A = \{x, y, z\}$ and $B = \{x, y\}$, then

$$A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}.$$

This has $6 = 3 \cdot 2$ elements, as we would expect.

Problem 1.42 If $A = \{1, \{1\}, \{\{1\}\}\},$ then

$$A \times A = \left\{ (1,1), (1,\{1\}), (1,\{\{1\}\}), \\ (\{1\},1), (\{1\},\{1\}), (\{1\},\{\{1\}\}), \\ (\{\{1\}\},1), (\{\{1\}\},\{1\}), (\{\{1\}\},\{\{1\}\}) \right\} \right\}$$

which has $9 = 3 \cdot 3$ elements, as we expect.

Problem 1.44 If
$$A = \{\emptyset, \{\emptyset\}\}$$
, then $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. Thus

$$A \times \mathcal{P}(A) = \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\emptyset, \{\{\emptyset\}\}), (\emptyset, \{\emptyset, \{\emptyset\}\}), (\{\emptyset\}, \{\emptyset\}\}), (\{\emptyset\}, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}), (\{\emptyset\}, \{\emptyset\}, \{\emptyset\}\})\}$$

As an aside, isn't parsing brackets fun?

Problem 1.46 The graph of the circle $x^2 + y^2 = 4$ as a subset of $\mathbb{R} \times \mathbb{R}$ is

$$C = \{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 4 \}.$$

De Morgan's Laws De Morgan's Laws are the following:

Theorem 1.1 Let A, B be sets (contained in some larger universe U, so that we might make sense of their complements). Then

$$(A \cup B)^c = A^c \cap B^c$$
 and $(A \cap B)^c = A^c \cup B^c$.

Proof We will first show that $(A \cup B)^c \subseteq A^c \cap B^c$. So suppose that $x \in (A \cup B)^c$. As $A \cup B$ is the collection of all elements that are either in A or in B (or possibly both), we must have that x is in neither A nor B. That is, $x \in A^c$ and $x \in B^c$. But this means that $x \in A^c \cap B^c$.

Next, we show that $A^c \cap B^c \subseteq (A \cup B)^c$. Suppose that $x \in A^c \cap B^c$. Then $x \notin A$ and $x \notin B$. But if this is true, then x cannot be in the union of A and B, and so we have that $x \in (A \cup B)^c$.

Combining these two facts, we find that $(A \cup B)^c = A^c \cap B^c$.

The proof of the other equality is similar.

Q.E.D.