1 Solutions to assignment 4, due June 9th

Problem 1.3 (a) The cardinality of $\{1,2,3,4,5\}$ is 5 .
(b) The cardinality of $\{0,2,4, \ldots, 20\}$ is 11 (don't forget that we start counting at $0!$).
(c) The cardinality of $\{25,26,27, \ldots, 75\}$ is 51 (Similar here. Don't forget the end points!).
(d) The cardinality of $\{\{1,2\},\{1,2,3,4\}\}$ is 2 .
(e) The cardinality of $\{\emptyset\}$ is 1 .
(f) The cardinality of $\{2,\{2,3,4\}\}$ is also 2.

Problem 1.5 (a) If $A=\{-1,-2,-3, \ldots\}$, then we can write

$$
A=\{x \in \mathbb{Z} \mid x<0\} .
$$

(b) If $B=\{-3,-2, \ldots, 3\}$ then we can also write

$$
B=\{x \in \mathbb{Z}| | x \mid<4\} .
$$

(c) If $C=\{-2,-1,1,2\}$ then we can write this as

$$
C=\{x \in \mathbb{Z}| | x \mid \leq 2 \text { and } x \neq 0\} .
$$

Note that each of these can be written in many other ways.
Problem 1.6 (a) We have $A=\{\ldots,-5,-3,-1,1,3,5, \ldots\}$.
(b) We have $B=\{\ldots,-8,-4,0,4,8,12, \ldots\}$.
(c) We have $C=\{\ldots,-5,-2,1,4,7,10, \ldots\}$.

Problem 1.8 (a) If we let $A=B=\emptyset$, and $C=\{0\}$, then we have $A \subseteq B \subsetneq C$.
(b) If we choose $A=\emptyset, B=\{\emptyset\}$, and $C=\{\{\emptyset\}\}$, then we have $A \in B$ and $B \in C$, but $A \notin C$.
(c) If we choose this time $A=\emptyset$, and $B=C=\{\emptyset\}$ then $A \in B$ and $A \subsetneq C$.

Note that examples that are simple are easy to understand!
Problem 1.10 If we work these out, we see that $A=B=D=E=\{-1,0,1\}$, but that $C=\{0,1\}$.
Problem 1.13 We have that $\mathcal{P}(\{0,\{0\}\})=\{\emptyset,\{0\},\{\{0\}\},\{0,\{0\}\}\}$. Note that as we expected, $|\mathcal{P}(A)|=2^{|A|}$.
Problem 1.14 We find that $\mathcal{P}(\{1\})=\{\emptyset,\{1\}\}$, and so $\mathcal{P}(\mathcal{P}(A))=\{\emptyset,\{\emptyset\},\{\{1\}\},\{\emptyset,\{1\}\}\}$. Thus $|\mathcal{P}(\mathcal{P}(\{1\}))|=4$.

Problem 1.15 We expect that $|\mathcal{P}(A)|=8$, as $|A|=3$. Writing out all possible subsets, we find

$$
\mathcal{P}(A)=\{\emptyset,\{0\},\{\emptyset\},\{\{\emptyset\}\},\{0, \emptyset\},\{0,\{\emptyset\}\},\{\emptyset,\{\emptyset\}\},\{0, \emptyset,\{\emptyset\}\}\}
$$

which verifies our expectation.
Problem 1.16 Recall that if $S \subset \mathcal{P}(A)$, then S is a set of subsets of A.
(a) We need any subset of $\mathcal{P}(\mathbb{N})$, so we consider $S=\emptyset$. Simple!
(b) If $S \in \mathcal{P}(\mathbb{N})$, then $S \subseteq \mathbb{N}$. So consider again $S=\emptyset$.
(c) We can't resort to such trickery this time. So we choose this time $S=\{\{1\},\{2\},\{3\},\{4\},\{5\}\}$.
(d) Similarly, we choose $S=\{1,2,3,4,5\}$.

Problem 1.18 (a) Consider $A=\emptyset, B=\{\emptyset\}$, and $C=\{1\}$. Then all conditions are satisfied.
(b) Consider this time $A=C=\{\{0\}, 0\}$, and $B=\{0\}$. Then $B \in A, B \subsetneq C$, and $A \cap C \neq \emptyset$.
(c) Consider $A=\{\emptyset\}$, and $B=C=\{\{\emptyset\}\}$. Then $A \in B, B \subseteq C$, but $A \nsubseteq C$.

As stated before, remember, simple examples are better!
Problem 1.19 We choose $A=\{0,1\}, B=\{0,2\}$, and $C=\{1,2\}$. Then we have that $B-A=\{2\}=$ $C-A$, but $B \neq C$.

Problem 1.24 We have that $A=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}$.
(a) We have that $\emptyset \in A$, and that $\{\emptyset\} \in A$.
(b) $|A|=3$.
(c) We have $\emptyset \subseteq A$ (since the empty set is a subset of every set), $\{\emptyset\} \subseteq A$ (Since $\emptyset \in A$), and also that $\{\emptyset,\{\emptyset\}\} \subseteq A$, since both of the elements are elements of A.
(d) $\emptyset \cap A=\emptyset$. This is true regardless of what A is.
(e) $\{\emptyset\} \cap A=\{\emptyset\}$.
(f) $\{\emptyset,\{\emptyset\}\} \cap A=\{\emptyset,\{\emptyset\}\}$, since this is a subset of A (and so its intersection with A is itself).
(g) $\emptyset \cup A=A$. Again, this is true regardless of what A is.
(h) $\{\emptyset\} \cup A=A$, since the former set is a subset of A.
(i) $\{\emptyset,\{\emptyset\}\} \cup A=A$ for the same reason.

Problem 1.27 Given $A=\{1,2,5\}, B=\{0,2,4\}$, and $C=\{2,3,4\}$, and also $S=\{A, B, C\}$ (so that S is the set whose elements are the sets $A, B, C)$, we have that

$$
\bigcup_{X \in S} X=A \cup B \cup C=\{1,2,3,4,5\}
$$

and that

$$
\bigcap_{X \in S}=A \cap B \cap C=\{2\} .
$$

Problem 1.41 If $A=\{x, y, z\}$ and $B=\{x, y\}$, then

$$
A \times B=\{(x, x),(x, y),(y, x),(y, y),(z, x),(z, y)\}
$$

This has $6=3 \cdot 2$ elements, as we would expect.
Problem 1.42 If $A=\{1,\{1\},\{\{1\}\}\}$, then

$$
\begin{aligned}
A \times A=\{ & (1,1),(1,\{1\}),(1,\{\{1\}\}), \\
& (\{1\}, 1),(\{1\},\{1\}),(\{1\},\{\{1\}\}), \\
& (\{\{1\}\}, 1),(\{\{1\}\},\{1\}),(\{\{1\}\},\{\{1\}\})\}
\end{aligned}
$$

which has $9=3 \cdot 3$ elements, as we expect.
Problem 1.44 If $A=\{\emptyset,\{\emptyset\}\}$, then $\mathcal{P}(A)=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}$. Thus

$$
\begin{aligned}
A \times \mathcal{P}(A)=\{ & (\emptyset, \emptyset),(\emptyset,\{\emptyset\}),(\emptyset,\{\{\emptyset\}\}),(\emptyset,\{\emptyset,\{\emptyset\}\}), \\
& (\{\emptyset\}, \emptyset),(\{\emptyset\},\{\emptyset\}),(\{\emptyset\},\{\{\emptyset\}\}),(\{\emptyset\},\{\emptyset,\{\emptyset\}\})\}
\end{aligned}
$$

As an aside, isn't parsing brackets fun?
Problem 1.46 The graph of the circle $x^{2}+y^{2}=4$ as a subset of $\mathbb{R} \times \mathbb{R}$ is

$$
C=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}+y^{2}=4\right\} .
$$

De Morgan's Laws De Morgan's Laws are the following:
Theorem 1.1 Let A, B be sets (contained in some larger universe U, so that we might make sense of their complements). Then

$$
(A \cup B)^{c}=A^{c} \cap B^{c} \quad \text { and } \quad(A \cap B)^{c}=A^{c} \cup B^{c}
$$

Proof We will first show that $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$. So suppose that $x \in(A \cup B)^{c}$. As $A \cup B$ is the collection of all elements that are either in A or in B (or possibly both), we must have that x is in neither A nor B. That is, $x \in A^{c}$ and $x \in B^{c}$. But this means that $x \in A^{c} \cap B^{c}$.
Next, we show that $A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$. Suppose that $x \in A^{c} \cap B^{c}$. Then $x \notin A$ and $x \notin B$. But if this is true, then x cannot be in the union of A and B, and so we have that $x \in(A \cup B)^{c}$.
Combining these two facts, we find that $(A \cup B)^{c}=A^{c} \cap B^{c}$.
The proof of the other equality is similar.
Q.E.D.

