1 List of problems to consider

1. We say that two primes p, q are twin primes if $|p-q|=2$. For example, 11,13 are twin primes, as are 29,31 . How many primes less than 100 are twins? Less than 200? Are there infinitely many?
2. Prove or disprove: There do not exist three integers $n, n+2, n+4$, all of which are prime.
3. Prove or disprove: For every integer n, the integers $2 n$ and $4 n+3$ are relatively prime. [Hint: Remember that if $d \mid a$ and $d \mid b$, then $d \mid(s a+t b)$ for any integers s, t.]
4. Prove or disprove: For every integer n, the integers $2 n+1$ and $3 n+2$ are relatively prime. [Hint: Same as above.]
5. Prove or disprove: If p, q are primes with $p, q \geq 5$, then $p^{2}-q^{2}$ is divisible by 24 .
6. The greatest common divisor of a, b was defined previously as the... greatest divisor that a and b have in common. Similarly, the least common multiple is defined to be the smallest multiple of both a and b; for example, if $a=4$ and $b=6$, then $\operatorname{gcd}(a, b)=2$ and $l c m(a, b)=12$.
Prove or disprove: For every integers a, b, we have that

$$
\operatorname{lcm}(a, b) \operatorname{gcd}(a, b)=a b
$$

[Hint: Look at the fundamental theorem of arithmetic. Can you use that to figure out what $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ are?]
7. Show that there are no strictly positive integer solutions to the equation

$$
x^{2}-y^{2}=1
$$

(Hint: Factor the left-hand side). Are there any solutions if we allow x, y to be negative or zero?
8. Find all integer solutions to the equation $x^{2}-y^{2}=10$.
9. Prove or disprove that every even number greater than 2 can be written as a sum of two primes.
10. Show that there are no rational roots to the cubic equation $x^{3}+x+1=0$. (Hint: What would happen if you assumed there was, and cleared denominators? What can we say about the parity [evenness or oddness] of the result?)
11. We say that an integer a has an inverse $\bmod b$ if there is some other integer c such that

$$
[a]_{b}[c]_{b}=[1]_{b}
$$

What conditions are there on a and b such that we can find such an inverse? [Hint: Look at the Euclidean algorithm]
12. We say that a number is perfect if the sum of its proper divisors is itself. For example, 6 and 28 are perfect, since $1+2+3=6$, and $1+2+4+7+14=28$. Prove the following: If $2^{p}-1$ is prime, then $2^{p-1}\left(2^{p}-1\right)$ is perfect. Is the converse true?

