Debra Griffin

Math 210A
HW \#9 The Sylow Theorems \#1-16
Textbook Problems:
5.23 (i) Prove that if d is a positive divisor of 24 , then S_{4} has a subgroup of order d.

Proof:
We have the following subgroups of S_{4} :

1124	$\{(1)\} \leq S_{4}$
$2 \mid 24$	$\{(1),(12)\} \leq S_{4}$
3124	$\{(1),(123),(132)\} \leq S_{4}$
4124	$\{(1),(12)(34),(13)(24),(14)(23)\} \leq S_{4}$
6124	$\{(1),(12),(13),(23),(123),(132)\} \leq S_{4}$
8124	$\{(1),(13),(24),(12)(34),(13)(24),(14)(23),(1234),(1432)\} \leq S_{4}$
$12 \mid 24$	$A_{4} \leq S_{4}$
24124	$S_{4} \leq S_{4}$

(ii) If $d \neq 4$, prove that any two subgroups of S_{4} having order d are isomorphic.

Proof:
Note that

S_{4}		
No.	Cycle Structure	Order
1	(1)	1
6	(12)	2
8	(123)	3
6	(1234)	4
3	$(12)(34)$	2

Let H_{d} denote any subgroup of S_{4} having order d.

1124	$H_{1} \cong\{(1)\}$ (there is only 1 isomorphism class of order 1)
$2 \mid 24$	$H_{2} \cong \mathbb{Z}_{2} \cong\{(1),(12)\}$ (there is only 1 isomorphism class of order 2)
$3 \mid 24$	$H_{3} \cong \mathbb{Z}_{3} \cong\{(1),(123),(132)\}$ (there is only 1 isomorphism class of order 3)
4124	$H_{4} \cong V_{4} \cong\{(1),(12)(34),(13)(24),(14)(23)\}$ or $H_{4} \cong \mathbb{Z}_{4} \cong\{(1),(13)(42),(1234),(1432)\}$
6124	$H_{6} \cong\{(1),(12),(13),(23),(123),(132)\}$ (A group of order 6 is only isomorphic to S_{3} or \mathbb{Z}_{6}. Since S_{4} has no element of order 6, then $\left.H_{6} \cong S_{3}.\right)$
8124	$H_{8} \cong\{(1),(13),(24),(12)(34),(13)(24),(14)(23),(1234),(1432)\}$ $\left(\right.$ Recall Prop 2.58(If G is a group and $\mathrm{g} \in \mathrm{G}$, then conjugation $\gamma_{\mathrm{g}}: G \rightarrow$ G is an isomorphism.) Since H_{8} is a Sylow 2-group of S_{4} and all Sylow 2-subgroups are conjugates, then all Sylow 2-subgroups are isomorphic.)
$12 \mid 24$	$H_{12} \cong A_{4} \leq S_{4}$ (there is only one subgroup of order 12)
24124	$H_{24} \cong S_{4}\left(\right.$ the orders are the same and $\left.H_{24} \leq S_{4}\right)$

5.27 Prove that a Sylow 2-subgroup of A_{5} has exactly five conjugates.

Proof:
$\left|A_{5}\right|=60=2^{2} \cdot 3 \cdot 5$.

$n_{2} 115 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3,5,15$
$n_{2}=1,3,5,15$	$n_{2}=1,3,5,7,9,11,13,15$	
$n_{3} 120 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,4,10,20$
$n_{3}=1,2,4,5,10,20$	$n_{3}=1,4,7,10,13,17,20$	
$n_{5} 112 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,6$
$n_{5}=1,2,3,4,6,12$	$n_{5}=1,6,11$	

$n_{2}=$ the number of conjugates of a Sylow 2-subgroup of A_{5}.
Since A_{5} is simple, then $n_{2} \neq 1, n_{3} \neq 1$, and $n_{5} \neq 1$, hence $n_{5}=6$.
If $\boldsymbol{n}_{\mathbf{3}}=\mathbf{4}$, then $\left[G: H_{3}\right]=4$ and $|G|=60 \times 4$!, so $n_{3} \neq 4$.
If $\boldsymbol{n}_{2}=\mathbf{3}$, then $\left[G: H_{2}\right]=3$ and $|G|=60 \times 3!$, so $n_{2} \neq 3$.
If $\boldsymbol{n}_{\mathbf{5}}=\mathbf{6}$ and $\boldsymbol{n}_{\mathbf{3}}=\mathbf{2 0}$, then A_{5} has 6 subgroups of order 5 , and 20 subgroups of order 3 .
This would require 24 distinct elements of order 5 and 40 distinct elements of order
3. This would exceed the order of $A_{5}, 60$.

So $n_{3}=10$.
Now assume $\boldsymbol{n}_{5}=6, \boldsymbol{n}_{3}=10$, and $\boldsymbol{n}_{2}=15$.
Then A_{5} has 6 subgroups of order 5, 10 subgroups of order 3 and 15 subgroups of order 4. Since A_{5} has no elements of order 4 , then this would require 24 distinct elements of order 5, 20 distinct elements of order 3,

A_{5}		
No.	Cycle Structure	Order
1	(1)	1
20	(123)	3
24	(12345)	5
15	$(12)(34)$	2

Notice that elements of order 2 in A_{5} are of the cycle structure, (12)(34).. So, for any Sylow 2-subgroups of A_{5}, Again, we have exceeded order of $A_{5}, 60$.

This leaves only one possibility.

Assume $\boldsymbol{n}_{5}=6, \boldsymbol{n}_{3}=\mathbf{1 0}$, and $\boldsymbol{n}_{\mathbf{2}}=5$.

Thus A_{5} has 6 subgroups of order 5, 10 subgroups of order 3 and 5 subgroups of order 4 . This would require 24 distinct elements of order 5, 20 distinct elements of order 3, and 15 elements of order 2 . These elements with the identity add up to 60 , as desired.
$\therefore n_{5}=10$, which implies that A_{5} has exactly five conjugates.
5.28 Prove that there are no simple groups of order $96,300,312$, or 1000 .

Hint. Some of these are not tricky.
Proof:
Let G be group such that $|\boldsymbol{G}|=\mathbf{9 6}=2^{5} \cdot 3$.

$n_{2} \backslash 3 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3$
$n_{2}=1,3$	$n_{2}=1,3$	
$n_{5} 132 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,16$
$n_{5}=1,2,4,8,16$	$n_{5}=1,6,11,16$	

If G is simple, then $n_{2} \neq 1$, hence $n_{2}=3$. But $|G|=96 \nmid 3$!.
So by the Index Factorial theorem, G is not simple, a contradiction to our assumption.
\therefore We have that $n_{2}=1$, hence $\exists P_{2} \triangleleft G$ where P_{2} is a Sylow 2-subgroup of G.
$\therefore G$ is not simple.
$\mathbf{5 . 2 8}$ (cont.) Let G be group such that $\mathbf{I} \boldsymbol{G} \mathbf{I}=\mathbf{3 0 0}=2^{2} \bullet 3 \bullet 5^{2}$.

$n_{2} 175 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3,5,15,25,75$
$n_{2}=1,3,5,15,25,75$	$n_{2}=1,3,5, \ldots, 15, \ldots, 25, \ldots, 75$	
$n_{3} 1100 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,4,10,25,100$
$n_{3}=1,2,4,5,10,20,25,50,100$	$n_{3}=1,4,10, \ldots, 25, \ldots, 100$	
$n_{5} 112 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,6$
$n_{5}=1,2,3,4,6,12$	$n_{5}=1,6,11$	

If G is simple, then $n_{5} \neq 1$, hence $n_{5}=6$. But $|G|=300 \nmid 6$!.
So by the Index Factorial theorem, G is not simple, a contradiction to our assumption.
\therefore We have that $n_{5}=1$, hence $\exists P_{5} \triangleleft G$ where P_{5} is a Sylow 5-subgroup of G.
$\therefore G$ is not simple.
Let G be group such that $|\boldsymbol{G}|=\mathbf{3 1 2}=2^{3} \cdot 3 \cdot 13$.

$n_{2} \mid 39 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3,13,39$
$n_{2}=1,3,13,39$	$n_{2}=1,3, \ldots, 13, \ldots, 39$	
$n_{3} 1104 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,4,13,52$
$n_{3}=1,2,4,8,13,26,52,104$	$n_{3}=1,4, \ldots, 13, \ldots, 52$	
$n_{13} 124 \Rightarrow$	$n_{13} \equiv 1(\bmod 13) \Rightarrow$	$n_{13}=1$
$n_{13}=1,2,4,8,12,24$	$n_{13}=1,14,25$	

Since $n_{13}=1$, then $\exists P_{13} \triangleleft G$ where P_{13} is a Sylow 13-subgroup of G.
Let G be group such that $\mathbf{I} \boldsymbol{G} \mathbf{= 1 0 0 0}=2^{3} \cdot 5^{3}$.

$n_{2} 1125 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,5,25,125$
$n_{2}=1,5,25,125$	$n_{2}=1, \ldots, 5, \ldots, 25, \ldots, 125$	
$n_{5} 18 \Rightarrow$	$n_{5}=1(\bmod 5) \Rightarrow$	$n_{5}=1$
$n_{5}=1,2,3,4,8$	$n_{5}=1,6,11$	

Since $n_{5}=1$, then $\exists P_{5} \triangleleft G$ where P_{5} is a Sylow 5-subgroup of G.
5.29 Let G be a group of order 90 .
(i) If a Sylow 5-subgroup P of G is not normal, prove that it has six conjugates.

Hint. If P has 18 conjugates, there are 72 elements in G of order 5. Show that G has more than 18 other elements.
Proof:
Let G be group such that $|G|=90=2 \cdot 3^{2} \cdot 5$.

$n_{2} 145 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3,5,15,45$
$n_{2}=1,3,5,15,45$	$n_{2}=1,3,5, \ldots, 15, \ldots, 45$	
$n_{3} 110 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,10$
$n_{3}=1,2,5,10$	$n_{3}=1,4,7,10, \ldots$	
$n_{5} 118 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,6$
$n_{5}=1,2,3,6,9,18$	$n_{5}=1,6,11,16, \ldots$	

Let P_{5} be a Sylow 5-subgroup of G. If P_{5} is not normal, then $n_{5} \neq 1$, hence $n_{5}=6$.
$\therefore P_{5}$ has 6 conjugates in G, (by Sylow theorem, part (2) (All Sylow p-supbgroups are conjugates.))
(ii) Prove that G is not simple.

Hint. Use Exercises 2.95(ii) and 2.96(ii) on page 114.
Proof:
Assume G is simple, then $n_{5} \neq 1$, hence $n_{5}=6$. Thus, there are $6 \bullet 4=24$ elements of order 5 . If $n_{3}=10$, there are 10 subgroups of order 9 . If these 10 subgroups intersect trivially, then we have $10 \bullet 8=80$ non-identity elements (not of order 5). This is too many elements, 104 for our group of order 90 .
So we have Sylow 3-subgroups, P_{3} and $P_{3}{ }^{\prime}$ such that $\left|P_{3} \cap P_{3}{ }^{\prime}\right|=3$. Let $Q=P_{3} \cap P_{3}{ }^{\prime}$. We know $Q \triangleleft P_{3}$ and $Q \triangleleft P_{3}{ }^{\prime}$ as P_{3} and $P_{3}{ }^{\prime}$ are Abelian by Corollary 2.104 (If p is prime, then every group of order p^{2} is Abelian.).
And we know $P_{3} \leq N_{G}(Q)$ and $P_{3}{ }^{\prime} \leq N_{G}(Q)$ as the normalizer is the largest subgroup of G in which Q is normal.
Also, $\left|P_{3}\right|=\left|P_{3}{ }^{\prime}\right| \neq\left|N_{G}(Q)\right|$ as $P_{3} \cup P_{3} \subseteq N_{G}(Q)$ and $P_{3} \neq P_{3}{ }^{\prime}$.
Let $m=\left|N_{G}(Q)\right|$. And now we have, $\left|P_{3}\right|=\left|P_{3}{ }^{\prime}\right|| | N_{G}(Q)| ||G|$, hence $9|m| 90$. So, $m=18,45$, or 90 .
If $m=18$, then $\left[G: N_{G}(Q)\right]=90 / 18=5$. But we have assumed G is simple, yet $90 \nmid 5!$, a contradiction, by the Index Factorial theorem. $\therefore m \neq 18$.
If $m=45$, then $\left[G: N_{G}(Q)\right]=90 / 45=2$, hence $N_{G}(Q) \triangleleft \mathrm{G}$, another contradiction.
If $m=90$, then $\left[G: N_{G}(Q)\right]=90 / 90=1$, hence $G=N_{G}(Q)$ which means Q is normal in G. So there is no escaping a contradiction to our assumption that G is simple, thus G is not simple.
5.30 Prove that there is no simple group of order 120.

Proof:
Let G be group such that $|G|=120=2^{3} \cdot 3 \cdot 5$.

$n_{2} \mathrm{I} 15 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3,5,15$
$n_{2}=1,3,5,15$	$n_{2}=1,3,5,15, \ldots$	
$n_{3} \mid 40 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,4,7,10,40$
$n_{3}=1,2,4,5,8,10,20,40$	$n_{3}=1,4,7,10, \ldots, 40$	
$n_{5} \mid 24 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,6$
$n_{5}=1,2,3,6,12,24$	$n_{5}=1,6,11,16, \ldots$	

Assume G is simple. Then $n_{2} \neq 1, n_{3} \neq 1$, and $n_{5} \neq 1$, hence $n_{5}=6$.
Then, by Representation on Cosets, $\exists \phi: G \rightarrow S_{6}$ where ker $\phi \leq N_{G}\left(P_{5}\right)$.
Since G is simple by assumption, then $\operatorname{ker} \phi=\{e\}$. So $G \cong \phi(G) \leq S_{6}$.
Notice that $\phi(G) \cap A_{6} \triangleleft \phi(G)$ (by $2^{\text {nd }}$ Isomorphism theorem).
And by Exam 1, \# 7(c), $\left|\phi(G) \cap A_{6}\right|=|\phi(G)|=120$ or $\left|\phi(G) \cap A_{6}\right|=(1 / 2)|\phi(G)|=60$.
If $\sim\left(\phi(G) \leq A_{6}\right)$, then $\phi(G) \cap A_{6} \neq \phi(G)$, hence $\left|\phi(G) \cap A_{6}\right|=(1 / 2)|\phi(G)|=60$.
But since $\phi(G) \cap A_{6} \triangleleft \phi(G), \phi(G)$ is simple by assumption, and $\left|\phi(G) \cap A_{6}\right|=60$, then we have a contradiction.
If $\phi(G) \leq A_{6}$, then $\phi(G) \cap A_{6}=\phi(G)$, hence $\left|\phi(G) \cap A_{6}\right|=|\phi(G)|=120$.
So $\left[A_{6}: \phi(G) \cap A_{6}\right]=360 / 120=3$.
Then by the Representation on Cosets theorem,
$\exists \psi: A_{6} \rightarrow \mathrm{~S}_{3}$ where ker $\psi \leq A_{6} / \phi(G) \cap A_{6}$. And since A_{6} is simple, then $\operatorname{ker} \psi=\{(1)\}$.
Thus, by the $1^{\text {st }}$ Isomorphism theorem, $A_{6} \cong \psi\left(\mathrm{~A}_{6}\right)$.
But $\psi\left(\mathrm{A}_{6}\right) \leq S_{3}$ and $\left|A_{6}\right|=120>6=\left|S_{3}\right|$.
So ker $\phi \neq\{e\}$, hence G is not simple.
5.31 Prove that there is no simple group of order 150.

Proof:

Let G be group such that $|G|=150=3^{2} \cdot 5^{2}$.

$n_{3} \mid 25 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,25$
$n_{3}=1,5,25$	$n_{3}=1,4, \ldots, 25, \ldots$	
$n_{5} \mid 9 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1$
$n_{5}=1,3,9$	$n_{5}=1,6,11,16, \ldots$	

Since $n_{5}=1$, then $\exists P_{5} \triangleleft G$ where P_{5} is a Sylow 5-subgroup of G.

Worksheet Problems:

2. Prove the following:
(a) Every group of order 15 is Abelian.

Proof:
Let G be group such that $|G|=15=3 \cdot 5$.

$n_{3} \mid 5 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1$
$n_{3}=1,5$	$n_{3}=1,4, \ldots$	
$n_{5} \mid 3 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1$
$n_{5}=1,3$	$n_{5}=1,6, \ldots$	

Since $n_{3}=1$, and $n_{5}=1$, then $\exists P_{3} \triangleleft G$ and $\exists P_{5} \triangleleft G$ where P_{3} is a Sylow 3-subgroup of G and P_{5} is a Sylow 5-subgroup of G.

Since $\left|P_{3}\right|=3$ and $\left|P_{5}\right|=5$, then by Corollary 2.45 (Every group of prime order is cyclic.)
$\exists a, b \in G$ such that $\circ(a)=3, \circ(b)=5,\langle a\rangle=P_{3}$, and $\langle b\rangle=P_{5}$.
Consider $\langle a\rangle\langle b\rangle$.
We know $\langle a\rangle\langle b\rangle \leq G$. And $(|\langle a\rangle|,|\langle b\rangle|)=1$, hence $|\langle a\rangle\langle b\rangle|=15=|G| . \quad \therefore\langle a\rangle\langle b\rangle=G$.
Also, $\langle a\rangle \cap\langle b\rangle=\{\mathrm{e}\}$. And so G is the internal direct product of $\langle a\rangle$ and $\langle b\rangle$.
And by Direct Products Theorem 4 (If G is the internal direct product of H and K, then $H K \cong H \times K.), \mathrm{G} \cong\langle a\rangle \times\langle b\rangle$. But $\langle a\rangle \cong \mathbb{Z}_{3}$ and $\langle b\rangle \cong \mathbb{Z}_{5}$ so $G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{5}$. And by Finite Abelian Groups, Exercise $1,\left(\mathbb{Z}_{n} \times \mathbb{Z}_{m} \cong \mathbb{Z}_{n m}\right.$ if and only if $(n, m)=1$.), we have $\mathrm{G} \cong \mathbb{Z}_{15}$. Since \mathbb{Z}_{15} is cyclic, then G is cyclic, hence Abelian.
2. (b) There are no more than 4 non-isomorphic groups of order 30 .

Proof:
Let G be group such that $|G|=30=2 \cdot 3 \cdot 5$.

$n_{2} \mathrm{I} 15 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3,5,15$
$n_{2}=1,3,5,15$	$n_{2}=1,3,5,15, \ldots$	
$n_{3} \mathrm{I} 10 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,10$
$n_{3}=1,2,5,10$	$n_{3}=1,4,7,10, \ldots$	
$n_{5} 16 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,6$
$n_{5}=1,2,3,6$	$n_{5}=1,6,11,16, \ldots$	

If $n_{3}=10$ and $n_{5}=9$, then we need 24 distinct elements of order 5 and 20 distinct elements of order 3, a contradiction to $|G|=30$.
\therefore Either $n_{3}=1$ or $n_{5}=1$. If $n_{3}=1$, then $\exists a \in G$ such that $\circ(a)=3,\langle a\rangle=P_{3}$ and $\langle a\rangle \triangleleft G$.
And since and $n_{5}=1,6$, we also have that $\exists b \in G$ such that $\circ(b)=5$, and $\langle b\rangle=P_{5}$.
By Direct Products, Exercise $2(H \leq G, K \leq G, H \triangleleft G$ or $K \triangleleft G \Rightarrow H K \leq G)$, we have that $\langle a\rangle\langle b\rangle \leq G$ and $\langle a\rangle\langle b\rangle \cong \mathbb{Z}_{15}$.by part (a). Thus, $\exists c \in G$ such that \circ (c) $=15$ and $\langle c\rangle \leq G$.
By similar argument, if $n_{5}=1$ and $n_{3}=1,10$ we have the same result.
Since $[G:\langle c\rangle]=2$, then $\langle c\rangle \triangleleft G$. So by Cauchy's theorem, $\exists d \in G$ such that $\circ(d)=2$.
So $\langle c\rangle \triangleleft G$ gives us that $d\langle c\rangle d^{-1} \in\langle c\rangle$. Hence $d c d^{-1}=c^{n}$ where $0 \leq n \leq 14$.
Thus $c=d^{-1} c^{n} d=d c^{n} d^{-1}=\left(d c d^{-1}\right)^{n}=\left(c^{n}\right)^{n}=c^{n^{2}} . \therefore e=c^{n^{2}-1}$. By corollary to Lagrange's theorem, $15 \mid n^{2}-1$. So $n^{2}-1=1,4,11$, or 14 . This gives us the following possible groups isomorphic to G :
$\left\langle c, d: c^{15}=1=d^{2} ; c d c^{-1}=d\right\rangle,\left\langle c, d: c^{15}=1=d^{2} ; c d c^{-1}=d^{4}\right\rangle,\left\langle c, d: c^{15}=1=d^{2} ; c d c^{-1}=d^{11}\right\rangle$, $\left\langle c, d: c^{15}=1=d^{2} ; c d c^{-1}=d^{14}\right\rangle$.
Thus, there are no more than 4 non-isomorphic groups of order 30 .
(c) There are at least 4 non-isomorphic groups of order 30. (Describe them in terms of groups that we know and explain how you know that the four you've described are nonisomorphic.

Proof:

$\left|\mathbb{Z}_{30}\right|=\left|D_{30}\right|=\left|D_{10} \times \mathbb{Z}_{3}\right|=\left|D_{6} \times \mathbb{Z}_{5}\right|=30$.
\mathbb{Z}_{30} has an element of order 30 .
D_{30} is not cyclic and has 15 elements of order 2 .
$D_{10} \times \mathbb{Z}_{3}$ has only 1 element of order 2 and 5 elements of order 6 .
$D_{6} \times \mathbb{Z}_{5}$ has only 1 element of order 6 and only 1 element of order 2.
\therefore None of the 4 groups have the same number of elements of the same order, hence none of them are isomorphic to each other.
\therefore There are at least 4 non-isomorphic groups of order 30 .

Page 7

Page 8
3. Let G be a group of order 48. Show that the intersection of any two distinct Sylow 2-subgroups of G has order 8 .

Proof:

$48=2^{4} \cdot 3$.

$n_{2} \mid 3 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3$
$n_{2}=1,3$	$n_{2}=1,3, \ldots$	
$n_{3} 116 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,4,16$
$n_{3}=1,2,4,8,16$	$n_{3}=1,4,7, \ldots, 16, \ldots$	

By hypothesis, we assume $n_{2}=3$ (i.e. $\exists P_{2}, P_{2}{ }^{\prime}$, and P_{2} ", distinct Sylow 2-subgroups of G, each of order 16.).
Note that $\left|P_{2} \cap P_{2}{ }^{\prime}\right| \neq 16$ as the subgroups are distinct, hence $\left|P_{2} \cap P_{2}{ }^{\prime}\right|=1,2,4$, or 8 .
Since $n_{2}=\left[G: N_{G}\left(P_{2}\right)\right]=3=\left[G: P_{2}\right]$, then $N_{G}\left(P_{2}\right)=P_{2}$.
By the Representation of Cosets theorem, $\exists \phi: G \rightarrow S_{3}$ such that ker $\phi \leq P_{2}$.
Since $|G|=48$ and $\left|S_{3}\right|=6$, then the map is an 8 to 1 map, hence \mid ker $\phi \mid \geq 8$.
We know $\sim\left(P_{2} \triangleleft G\right)$ but ker $\phi \triangleleft \mathrm{G}$, so ker $\phi \neq P_{2}$.
We also know P_{2} is conjugate to $P_{2}{ }^{\prime}$, so $\exists g \in G$ such that $P_{2}{ }^{\prime}=g P_{2} g^{-1}$.
Since $\operatorname{ker} \phi \triangleleft G$, then $g(\operatorname{ker} \phi) g^{-1}=\operatorname{ker} \phi$.
And, since ker $\phi \leq P_{2}$, ker $\phi=g(\operatorname{ker} \phi) g^{-1} \subseteq g P_{2} g^{-1}=P_{2}{ }^{\prime}$.
\therefore ker $\phi \subseteq P_{2} \cap P_{2}$.
Since Iker $\phi \mid \geq 8$, ker $\phi \subseteq P_{2} \cap P_{2}{ }^{\prime}$, and $\left|P_{2} \cap P_{2}{ }^{\prime}\right| \leq 8$, then $\left|P_{2} \cap P_{2}{ }^{\prime}\right|=8$.
\therefore The intersection of any two distinct Sylow 2-subgroups of G has order 8 .
4. Let G be a group with $|G|=56$. Prove that G is not simple.

Proof:

$56=2^{3} \cdot 7$.

$n_{2} 17 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,7$
$n_{2}=1,7$	$n_{2}=1,3,5,7, \ldots$	
$n_{7} 18 \Rightarrow$	$n_{7} \equiv 1(\bmod 7) \Rightarrow$	$n_{7}=1,8$
$n_{7}=1,2,4,8$	$n_{7}=1,4,7, \ldots$	

Assume G is simple, then $n_{2} \neq 1$ and $n_{7} \neq 1$. Thus, $n_{2}=7$ and $n_{7}=8$, which gives us 7 Sylow 2-subgroups each of order 8 and 8 Sylow 7 -subgroups each of order 7.
Since 7 is prime, then $7 \bullet 6=42$ elements of our group of order 56 have order 7 .
The 7 subgroups of order 8 have intersections of 1,2 , or 4 elements, hence we have a minimum of $5 \bullet 4=20$ elements of order $\neq 7$, thus exceeding the size of our group.
$\therefore n_{2}=1$ or $n_{7}=1$, hence G is not simple.
5. What is the smallest composite integer n such that there is a unique group of order n ? 15.

Proof:

Any group with order an even composite integer is isomorphic to a dihedral group as well as a cyclic group. So n must be odd. The smallest odd composite integer is 15 .
By Exercise 1 (a) above, any group of order 15 is cyclic and Abelian, hence unique.
6. Let G be a noncyclic group of order 21 .
(a) How many 3-Sylow subgroups does G have? 7 .

Proof:

$n_{3} 17 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,7$
$n_{3}=1,7$	$n_{3}=1,4,7, \ldots$	
$n_{7} 13 \Rightarrow$	$n_{7} \equiv 1(\bmod 7) \Rightarrow$	$n_{7}=1$
$n_{7}=1,3$	$n_{7}=1,4, \ldots$	

If $n_{3}=1$, and $n_{7}=1$, then $\exists P_{3} \triangleleft G$ and $\exists P_{7} \triangleleft G$ where P_{3} is a Sylow 3-subgroup of G and P_{7} is a Sylow 7-subgroup of G.
Since $\left|P_{3}\right|=3$ and $\left|P_{7}\right|=7$, then
$\exists a, b \in G$ such that $\circ(a)=3, \circ(b)=7,\langle a\rangle=P_{3}$, and $\langle b\rangle=P_{7}$.
We know $\langle a\rangle\langle b\rangle \leq G$. And $(|\langle a\rangle|,|\langle b\rangle|)=1$, hence $|\langle a\rangle\langle b\rangle|=21=|G| . \quad \therefore\langle a\rangle\langle b\rangle=G$.
Also, $\langle a\rangle \cap\langle b\rangle=\{\mathrm{e}\}$. And so G is the internal direct product of $\langle a\rangle$ and $\langle b\rangle$.
Thus, $G \cong\langle a\rangle \times\langle b\rangle$. But $\langle a\rangle \cong \mathbb{Z}_{3}$ and $\langle b\rangle \cong \mathbb{Z}_{7}$ so $G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{7}$. And so we have $G \cong \mathbb{Z}_{21}$,
which is cyclic.
$\therefore n_{3}=7$, hence G has 7 Sylow 3-subgroups.
(b) Prove that G has 14 elements of order 3 .

Proof:
Since G has 7 distinct Sylow 3-subgroups, then G has $7 \bullet 2$ distinct elements of order 3 .
7. Let G be a group of order 60. Show that G has exactly four elements of order 5 or exactly 24 elements of order 5 . Which of these cases holds for A_{5} ?
Proof:
$60=2^{2} \cdot 3 \cdot 5$

$n_{2} \mathrm{I} 15 \Rightarrow$	$n_{2} \equiv 1(\bmod 2) \Rightarrow$	$n_{2}=1,3,5,15$
$n_{2}=1,3,5,15$	$n_{2}=1,3,5,15, \ldots$	
$n_{3} \mid 20 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,4,10$
$n_{3}=1,2,4,5,10,20$	$n_{3}=1,4,7,10, \ldots$	
$n_{5} \mid 12 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,6$
$n_{5}=1,2,3,4,6,12$	$n_{5}=1,6,11,16, \ldots$	

If $n_{5}=1$, then there is a unique Sylow 5-subgroup of G such that $\left|P_{5}\right|=5$, hence G has exactly four elements of order 5 .
If $n_{5}=6$, then there are 6 unique Sylow 5 -subgroups of G, each of order 5 .
Since the subgroups are unique and of prime order, the intersection of any 2 of them has order $1 . \therefore$ In this case, G has exactly $6 \bullet 4=24$ elements of order 5 .
Since A_{5} is simple, then $n_{5} \neq 1$, hence A_{5} has exactly 24 elements of order 5 .
8. Let G be a group of order 60 and let $H \triangleleft G$ with $|H|=2$. Show
(a) G has normal subgroups of order 6, 10, and 30,

Proof:
Since $H \triangleleft G$ with $|H|=2$, then G / H is a group and $|G / H|=30$.
And by Exercise 2 (b) $\exists S^{*} \leq G / H$ such that S^{*} is cyclic, $S^{*} \triangleleft G / H$, and $\left|S^{*}\right|=15$.
By Exercise 2 (a) $\exists T^{*} \leq \mathrm{S}^{*} / H$ such that T^{*} is cyclic, $T^{*} \triangleleft G / H$, and $\left|T^{*}\right|=5$, and
$\exists U^{*} \leq \mathrm{S}^{*} / H$ such that U^{*} is cyclic, $U^{*} \triangleleft G / H$, and $\left|U^{*}\right|=3$,
So, by the Correspondence theorem,
$\exists S \leq G, T \leq G$, and $U \leq G$ such that
$S^{*}=S / H, S \triangleleft G,|S|=30$,
$T^{*}=T / H, T \triangleleft G,|T|=10$, and
$S^{*}=U / H, U \triangleleft G,|U|=6$
(b) G has subgroups of order 12 and 20, and

Proof:
Since $|G / H|=30$, then $\exists P_{3}{ }^{*}, P_{5}{ }^{*}$ both normal to G / H, and $\exists P_{2}{ }^{*} \leq G / H$.
So $P_{2}{ }^{*} P_{3}{ }^{*} \leq G / H$, and $P_{2}{ }^{*} P_{5} * \leq G / H$, where $\left|P_{2} * P_{3}{ }^{*}\right|=6$ and $\left|P_{2} * P_{5}{ }^{*}\right|=10$.
By the Correspondence theorem $\exists H_{12}$ and H_{20}, subgroups of G , such that $H_{12}=P_{2} * P_{3} * / \mathrm{H}$, $H_{20}=P_{2} * P_{5} * / \mathrm{H},\left|H_{12}\right|=12$, and $\left|H_{20}\right|=20$.
(c) G has a cyclic subgroup of order 30 .

Proof:
(stuck)
9. Let G be a group of order 60. If the Sylow 3-subgroup is normal, show that the Sylow 5 -subgroup is also normal.
Proof:
(stuck)
10. Let $|G|=7^{2} \cdot 13$. Prove G is Abelian.

Proof:

$n_{7} \mathrm{I} 13 \Rightarrow$	$n_{7} \equiv 1(\bmod 7) \Rightarrow$	$n_{7}=1$
$n_{7}=1,13$	$n_{7}=1,4,7, \ldots$	
$n_{13} 149 \Rightarrow$	$n_{13} \equiv 1(\bmod 13) \Rightarrow$	$n_{13}=1$
$n_{13}=1,7,49$	$n_{13}=1,12, \ldots$	

Since $n_{7}=1$ and $n_{13}=1$, then by Proposition 5.39 (A finite group G all of whose Sylow subgroups are normal is the direct product of its Sylow subgroups.), $G=P_{7} \times P_{13}$. Since $\left|P_{7}\right|=49$, then P_{7} is Abelian. $\therefore P_{7} \cong \mathbb{Z}_{49}$ or $P_{7} \cong \mathbb{Z}_{7} \times \mathbb{Z}_{7}$. And since 13 is prime, $P_{13} \cong \mathbb{Z}_{13}$. Thus, $G \cong \mathbb{Z}_{49} \times \mathbb{Z}_{13}$, or $G \cong \mathbb{Z}_{7} \times \mathbb{Z}_{7} \times \mathbb{Z}_{13}$, hence G is Abelian.

A group is said to be solvable if there exist subgroups $G_{0}, G_{1}, \ldots, G_{k}$ such that

$$
\{e\}=G_{k} \triangleleft G_{k-1} \triangleleft \cdots \triangleleft G_{2} \triangleleft G_{1} \triangleleft G_{0}=G
$$

and such that G_{i} / G_{i+1} is Abelian for all i. This sequence of subgroups is called a solvable series for G.
11. Prove that S_{4} is solvable.

Proof:
$\{(1)\} \triangleleft \boldsymbol{V}_{4} \triangleleft A_{4} \triangleleft S_{4}$.
$\left[S_{4}: A_{4}\right]=2 . \therefore S_{4} / A_{4}$ is Abelian since 2 is prime.
$\left[A_{4}: \boldsymbol{V}_{4}\right]=3 . \quad \therefore A_{4}: \boldsymbol{V}_{4}$ is Abelian since 3 is prime.
$\boldsymbol{V}_{4} /\{(1)\}=\boldsymbol{V}_{4}$ and we know \boldsymbol{V}_{4} is Abelian.
$\therefore S_{4}$ is solvable.
12. Prove that if G is solvable and $H \leq G$, then H is solvable.

Proof:
G is solvable \Rightarrow exist subgroups $G_{0}, G_{1}, \ldots, G_{k}$ such that
$\{e\}=G_{k} \triangleleft G_{k-1} \triangleleft \cdots \triangleleft G_{2} \triangleleft G_{1} \triangleleft G_{0}=G$.
Let $H_{0}=H$ and $H_{i}=H \cap G_{i}$. Then by the $2^{\text {nd }}$ Isomorphism theorem, $H \cap G_{i} \triangleleft H$. (stuck)
13. Suppose G is solvable and $\phi: G \rightarrow \bar{G}$ is a homomorphism from G to \bar{G}. Prove $\phi(G)$ is solvable.

Proof:
G is solvable \Rightarrow exist subgroups $G_{0}, G_{1}, \ldots, G_{k}$ such that
$\{e\}=G_{k} \triangleleft G_{k-1} \triangleleft \cdots \triangleleft G_{2} \triangleleft G_{1} \triangleleft G_{0}=G$.
Suppose ker $\phi=\{e\}$, then by the Correspondence theorem, $\phi\left(G_{i}\right) \triangleleft \phi\left(G_{i-1}\right)$ for every $i \in\{0,1, \ldots, k\}$ and $\phi\left(G_{0}\right)=\phi(\bar{G})$.
Suppose $G_{j}=\operatorname{ker} \phi$ for some $j \in\{0,1, \ldots, k\}$, then by the Correspondence theorem,
$\phi\left(G_{i}\right) \triangleleft \phi\left(G_{i-1}\right)$ for every $i \in\{0,1, \ldots, j\}, \phi\left(G_{0}\right)=\phi(\bar{G})$, and
$\phi\left(G_{m}\right) \subseteq\left\{e_{\bar{G}}\right\}$ for every $m \in\{j+1, \ldots, k\}$, hence $\phi\left(G_{m}\right) \triangleleft \phi\left(G_{m-l}\right)$.
Need to show $\phi\left(G_{i-1}\right) / \phi\left(G_{i}\right)$ is Abelian for every i.
(stuck)
$\therefore \bar{G}$ is solvable.
14. Let G be a group with $H \triangleleft G$. Suppose H and G / H are both solvable. Prove G is solvable.
Proof:
H is solvable \Rightarrow exist subgroups $H_{0}, H_{1}, \ldots, H_{k}$ of H such that
$\{e\}=H_{k} \triangleleft H_{k-1} \triangleleft \cdots \triangleleft H_{2} \triangleleft H_{1} \triangleleft H_{0}=H$.
G / H is solvable \Rightarrow exist subgroups $N_{0}, N_{1}, \ldots, N_{k}$ of G / H such that
$\{e\}=N_{k} \triangleleft N_{k-1} \triangleleft \cdots \triangleleft N_{2} \triangleleft N_{1} \triangleleft N_{0}=N$.
By the Correspondence theorem, there are subgroups P_{i} of G with $H \leq P_{i}$
such that $P_{i} / H=N_{i}$ and $P_{i} \triangleleft P_{i-1}$. So $H \triangleleft P_{k} / H \triangleleft P_{k-1} / H \triangleleft \cdots \triangleleft P_{1} / H \triangleleft P_{0} / H=G / H$.
By the $3^{\text {rd }}$ Isomorphism theorem, $P_{i} / P_{i-1} \cong\left(P_{i} / H\right) /\left(P_{i-1} / H\right)$. And since $\left(P_{i} / H\right) /\left(P_{i-1} / H\right)$ is Abelian, then P_{i} / P_{i-1} is Abelian.
$\therefore\{\mathrm{e}\}=H_{k} \triangleleft H_{k-1} \triangleleft \cdots \triangleleft H_{2} \triangleleft H_{1} \triangleleft H_{0}=H \triangleleft P_{k} \triangleleft P_{k-1} \triangleleft \cdots \triangleleft P_{1} \triangleleft P_{0}=G$.
$\therefore G$ is solvable.
15. Let G be a group with $H \leq G$ and $K \triangleleft G$. Prove that if H and K are both solvable, then $H K$ is solvable.
Proof:
16. Let G be a group of order $495=3^{2} \cdot 5 \cdot 11$.
(a) What are the possible numbers of Sylow subgroups? (ie. what are the possibilities for n_{3}, n_{5}, and n_{11} ?)
Proof:

$n_{3} 155 \Rightarrow$	$n_{3} \equiv 1(\bmod 3) \Rightarrow$	$n_{3}=1,55$
$n_{3}=1,5,11,55$	$n_{3}=1,4, \ldots, 55, \ldots$	
$n_{5} 199 \Rightarrow$	$n_{5} \equiv 1(\bmod 5) \Rightarrow$	$n_{5}=1,11$
$n_{5}=1,3,9,11,33,99$	$n_{5}=1,6,11,16, \ldots$	
$n_{11} 145 \Rightarrow$	$n_{11} \equiv 1(\bmod 11) \Rightarrow$	$n_{11}=1,45$
$n_{11}=1,3,5,9,15,45$	$n_{11}=1,10, \ldots, 45, \ldots$	

(b) Prove that a 5-Sylow subgroup or an 11-Sylow subgroup is normal.

Proof:
If $n_{5}=11$ and $n_{11}=45$, then there are 11 distinct subgroups of order 5 and 45 distinct subgroups of order 11. Thus, G contains $11 \cdot 4=44$ elements of order 5 and $45 \cdot 10=$ 450 elements of order 11. We also have at least one subgroup of order 9 which contains 8 elements of order 3 or 9 . So G contain $44+450+8=502$ elements, a contradiction to $|G|=495 . \therefore n_{5}=11$ or $n_{11}=45$, thus a 5 -Sylow subgroup or an 11-Sylow subgroup is normal in G.
(c) Let K be the normal subgroup from part (b). Prove G / K is isomorphic to $\mathbb{Z}_{m} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ or $\mathbb{Z}_{m} \times \mathbb{Z}_{9}$ where $m \in\{5,11\}$.
Proof:
Let M be the other subgroup from part (b) and let P_{3} be a Sylow 3-subgroup of G.
Suppose $m=5$, then $|G / K|=3^{2} \cdot 5 \cdot 11=5=3^{2} \cdot 11$. So $\mathrm{n}_{3}=1$ and $\mathrm{n}_{11}=1$.
Thus by Proposition 5.39 (A finite group G all of whose Sylow subgroups are normal is the direct product of its Sylow subgroups.), $G / K \cong P_{3} P_{11}$. Since $\left|P_{3}\right|=9$, then P_{3} is
Abelian. $\therefore P_{3} \cong \mathbb{Z}_{9}$ or $P_{3} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. And since 11 is prime, $P_{11} \cong \mathbb{Z}_{11}$.
Thus, $G \cong \mathbb{Z}_{11} \times \mathbb{Z}_{9}$, or $G \cong \mathbb{Z}_{11} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
If $m=11$, then by similar proof we have $G \cong \mathbb{Z}_{5} \times \mathbb{Z}_{9}$, or $G \cong \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
(d) Let H_{5} be a 5-Sylow subgroup of G and let H_{11} be an 11-Sylow subgroup of G. Prove $H_{5} H_{11} \triangleleft G$.
(part (c) might be helpful - one of these two subgroups is the K in part (c)).

Proof:

By the Second Isomorphism theorem, $H_{5} H_{11} / H_{5} \cong H_{11} / H_{5} \cap H_{11}$. Since $H_{5} \cap H_{11}=\{\mathrm{e}\}$, then $H_{5} H_{11} / H_{5} \cong H_{11}$. And since $\left|H_{11}\right|=11$, then $H_{11} \cong \mathbb{Z}_{11}$.
Since, by part (c) G / H_{5} is isomorphic to $\mathbb{Z}_{11} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ or $\mathbb{Z}_{11} \times \mathbb{Z}_{9}$, and $\mathbb{Z}_{11} \triangleleft \mathbb{Z}_{11} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and $\mathbb{Z}_{11} \triangleleft \mathbb{Z}_{11} \times \mathbb{Z}_{9}$, then by the Correspondence theorem, $H_{5} H_{11} \triangleleft G$.
(e) Find a solvable series for G.

Proof:
$\{e\} \triangleleft H_{5} \triangleleft H_{5} H_{11} \triangleleft G$.

