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 Debra Griffin 
Math 210A 

HW #9 The Sylow Theorems #1 – 16   
 

Textbook Problems: 
5.23 (i)  Prove that if d is a positive divisor of 24, then S4 has a subgroup of order d. 
Proof: 
We have the following subgroups of S4: 
1|24 {(1)} ≤ S4 
2|24 {(1), (12)} ≤ S4 
3|24 {(1), (123), (132)} ≤ S4 
4|24 {(1), (12)(34), (13)(24), (14)(23)} ≤ S4 
6|24 {(1), (12), (13), (23), (123), (132)} ≤ S4 
8|24 {(1), (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)} ≤ S4 
12|24 A4 ≤ S4 
24|24 S4 ≤ S4 
 

 
(ii)  If d ≠ 4, prove that any two subgroups of S4 having order d are isomorphic.  
Proof: 
Note that 
 
 
 
 
 
 
 
 
Let Hd denote any subgroup of S4 having order d. 
1|24 H1 ≅ {(1)} (there is only 1 isomorphism class of order 1) 
2|24 H2 ≅ Z2 ≅ {(1), (12)} (there is only 1 isomorphism class of order 2) 
3|24 H3 ≅ Z3 ≅ {(1), (123), (132)} (there is only 1 isomorphism class of order 3) 
4|24 H4 ≅ V4 ≅ {(1), (12)(34), (13)(24), (14)(23)}  

or H4 ≅ Z4 ≅ {(1), (13)(42), (1234), (1432)} 
6|24 H6 ≅ {(1), (12), (13), (23), (123), (132)}  

(A group of order 6 is only isomorphic to S3 or Z6.  Since S4 has no element of 
order 6, then H6 ≅ S3.) 

8|24 H8 ≅ {(1), (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)}  
(Recall Prop 2.58(If G is a group and g ∈ G, then conjugation γg :G → G is an 
isomorphism.) Since H8 is a Sylow 2-group of S4 and all Sylow 2-subgroups 
are conjugates, then all Sylow 2-subgroups are isomorphic.) 

12|24 H12 ≅ A4 ≤ S4 (there is only one subgroup of order 12) 
24|24 H24 ≅ S4 (the orders are the same and H24 ≤ S4) 

 

S4 
No. Cycle  

Structure 
Order 

1 (1) 1 
6 (12) 2 
8 (123) 3 
6 (1234) 4 
3 (12)(34) 2 
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5.27  Prove that a Sylow 2-subgroup of A5 has exactly five conjugates.  
Proof: 
|A5| = 60 = 22 • 3 • 5. 

n2|15 ⇒ 
n2 = 1, 3, 5, 15 

 n2 ≡ 1 (mod 2) ⇒  
n2 = 1, 3, 5, 7, 9, 11, 13, 15 

n2 = 1, 3, 5, 15 

n3|20 ⇒ 
n3 = 1, 2, 4, 5, 10, 20 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, 7, 10, 13, 17, 20 

n3 = 1, 4, 10, 20 

n5|12 ⇒  
n5 = 1, 2, 3, 4, 6, 12 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11 

n5 = 1, 6 

n2 = the number of conjugates of a Sylow 2-subgroup of A5. 
Since A5 is simple, then n2 ≠ 1, n3 ≠ 1, and n5 ≠ 1, hence n5 = 6. 
If n3 = 4, then [G:H3] = 4 and |G| = 60 | 4!, so n3 ≠ 4. 
If n2 = 3, then [G:H2 ] = 3 and |G| = 60 | 3!, so n2 ≠ 3. 
If n5 = 6 and n3 = 20, then A5 has 6 subgroups of order 5, and 20 subgroups of order 3. 

This would require 24 distinct elements of order 5 and 40 distinct elements of order 
3.  This would exceed the order of A5, 60. 
So n3 = 10. 

Now assume n5 = 6, n3 = 10, and n2 = 15.   
Then A5 has 6 subgroups of order 5, 10 subgroups of order 3 and 15 subgroups of 
order 4.  Since A5 has no elements of order 4, then this would require 24 distinct 
elements of order 5, 20 distinct elements of order 3,  

 
Notice that elements of order 2 in A5 are of the cycle 
structure, (12)(34)..  So, for any Sylow 2-subgroups of A5, 
only 4 “letters” of {1, 2, …, 5} can be used as using all 5 in 
one subgroup would create a permutation of cycle structure 
other that (12)(34).  And we can only make 5 such 
subgroups.  ∴ n2 ≠ 15. 
 
 

This leaves only one possibility. 
Assume n5 = 6, n3 = 10, and n2 = 5.   

Thus A5 has 6 subgroups of order 5, 10 subgroups of order 3 and 5 subgroups of 
order 4.  This would require 24 distinct elements of order 5, 20 distinct elements of 
order 3, and 15 elements of order 2.  These elements with the identity add up to 60, 
as desired. 

∴  n5 = 10, which implies that A5 has exactly five conjugates. 
 

A5 

No. Cycle  
Structure 

Order 

1 (1) 1 
20 (123) 3 
24 (12345) 5 
15 (12)(34) 2 

Debra Griffin � 11/9/09 5:42 AM
Deleted: and 45 distinct elements of order 2.  
Again, we have exceeded order of A5, 60.
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5.28  Prove that there are no simple groups of order 96, 300, 312, or 1000. 
Hint.  Some of these are not tricky.  
Proof: 
Let G be group such that |G| = 96 = 25 • 3. 
n2|3 ⇒ 
n2 = 1, 3 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3 

n2 = 1, 3 

n5|32 ⇒  
n5 = 1, 2, 4, 8, 16 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11, 16 

n5 = 1, 16 

 
If G is simple, then n2 ≠ 1, hence n2 = 3.  But |G| = 96 | 3!.   
So by the Index Factorial theorem, G is not simple, a contradiction to our assumption.   
∴  We have that n2 = 1, hence ∃ P2  G where P2 is a Sylow 2-subgroup of G.   
∴G is not simple.  

5.28 (cont.) Let G be group such that |G| = 300 = 22 • 3 • 52. 
n2|75 ⇒ 
n2 = 1, 3, 5, 15, 25, 75 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, 5, …, 15, …, 25, …, 75 

n2 = 1, 3, 5, 15, 25, 75 

n3|100 ⇒ 
n3 = 1, 2, 4, 5, 10, 20, 25, 50, 100 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, 10, …, 25, …, 100 

n3 = 1, 4, 10, 25, 100 

n5|12 ⇒  
n5 = 1, 2, 3, 4, 6, 12 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11 

n5 = 1, 6 

 
If G is simple, then n5 ≠ 1, hence n5 = 6.  But |G| = 300 | 6!.   
So by the Index Factorial theorem, G is not simple, a contradiction to our assumption.   
∴  We have that n5 = 1, hence ∃ P5  G where P5 is a Sylow 5-subgroup of G.   
∴G is not simple. 

 
Let G be group such that |G| = 312 = 23 • 3 • 13. 
n2|39 ⇒ 
n2 = 1, 3, 13, 39 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, …, 13, …, 39 

n2 = 1, 3, 13, 39 

n3|104 ⇒ 
n3 = 1, 2, 4, 8, 13, 26, 52, 104 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, …, 13, …, 52 

n3 =  1, 4, 13, 52 

n13|24 ⇒  
n13 = 1, 2, 4, 8, 12, 24 

 n13 ≡ 1 (mod 13) ⇒ 
 n13 = 1, 14, 25 

n13 = 1 

Since n13 = 1, then ∃ P13  G where P13 is a Sylow 13-subgroup of G. 
 

Let G be group such that |G| = 1000 = 23 • 53. 
n2|125 ⇒ 
n2 = 1, 5, 25, 125 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, …, 5, …, 25, …, 125 

n2 = 1, 5, 25, 125 

n5|8 ⇒  
n5 = 1, 2, 3, 4, 8 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11 

n5 = 1 

Since n5 = 1, then ∃ P5  G where P5 is a Sylow 5-subgroup of G. 
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5.29  Let G be a group of order 90. 
(i)  If a Sylow 5-subgroup P of G is not normal, prove that it has six conjugates. 
Hint.  If P has 18 conjugates, there are 72 elements in G of order 5.  Show that G has 
more than 18 other elements.  
Proof: 
Let G be group such that |G| = 90 = 2 • 32 • 5. 

n2|45 ⇒ 
n2 = 1, 3, 5, 15, 45 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, 5, …, 15, …, 45 

n2 = 1, 3, 5, 15, 45 

n3|10 ⇒ 
n3 = 1, 2, 5, 10 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, 7, 10, … 

n3 = 1, 10 

n5|18 ⇒  
n5 = 1, 2, 3, 6, 9, 18 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11, 16, … 

n5 = 1, 6 

Let P5 be a Sylow 5-subgroup of G.  If P5 is not normal, then n5 ≠ 1, hence n5 = 6.  
∴ P5 has 6 conjugates in G, (by Sylow theorem, part (2) (All Sylow p-supbgroups are 
conjugates.)) 

 
(ii)  Prove that G is not simple. 
Hint.  Use Exercises 2.95(ii) and 2.96(ii) on page 114.  
Proof: 
Assume G is simple, then n5 ≠ 1, hence n5 = 6.  Thus, there are 6 • 4 = 24 elements of 
order 5.  If n3 = 10, there are 10 subgroups of order 9.  If these 10 subgroups intersect 
trivially, then we have 10 • 8 = 80 non-identity elements (not of order 5).  This is too 
many elements, 104 for our group of order 90.   
So we have Sylow 3-subgroups, P3 and P3’ such that |P3 ∩ P3’| = 3.  Let Q = P3 ∩ P3’. 
We know Q  P3  and Q  P3’ as P3 and P3’ are Abelian by Corollary 2.104 (If p is 
prime, then every group of order p2 is Abelian.). 
And we know P3 ≤ NG(Q) and P3’ ≤ NG(Q) as the normalizer is the largest subgroup of G 
in which Q is normal. 
Also, |P3| = |P3’| ≠ |NG(Q)| as P3 ∪ P3’ ⊆ NG(Q)  and P3 ≠ P3’.   
Let m = |NG(Q)|.  And now we have, |P3| = |P3’|⏐ |NG(Q)|⏐ |G|, hence 9⏐ m⏐90. 
So, m = 18, 45, or 90. 
If m = 18, then [G: NG(Q)] = 90/18 = 5.  But we have assumed G is simple, yet 90⏐5!, a 
contradiction, by the Index Factorial theorem.  ∴  m ≠ 18. 
If m = 45, then [G: NG(Q)] = 90/45 = 2, hence NG(Q)  G, another contradiction. 
If m = 90, then [G: NG(Q)] = 90/90 = 1, hence G = NG(Q) which means Q is normal in G. 
So there is no escaping a contradiction to our assumption that G is simple, thus G is not 
simple. 
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5.30  Prove that there is no simple group of order 120.  
Proof: 
Let G be group such that |G| = 120 = 23 • 3 • 5. 

n2|15 ⇒ 
n2 = 1, 3, 5, 15 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, 5, 15, … 

n2 = 1, 3, 5, 15 

n3|40 ⇒ 
n3 = 1, 2, 4, 5, 8, 10, 20, 40 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, 7, 10, …, 40 

n3 = 1, 4, 7, 10, 40 

n5|24 ⇒  
n5 = 1, 2, 3, 6, 12, 24 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11, 16, … 

n5 = 1, 6 

Assume G is simple.  Then n2 ≠ 1, n3 ≠ 1, and n5 ≠ 1, hence n5 = 6. 
Then, by Representation on Cosets, ∃ φ:G → S6 where ker φ ≤ NG(P5).  
Since G is simple by assumption, then ker φ = {e}.  So G ≅ φ(G) ≤ S6. 
Notice that φ(G) ∩ A6  φ(G) (by 2nd Isomorphism theorem). 
And by Exam 1, # 7(c), |φ(G) ∩ A6| = |φ(G)| = 120 or |φ(G) ∩ A6| = (1/2)|φ(G)| = 60. 
If ~(φ(G) ≤ A6), then φ(G) ∩ A6 ≠ φ(G), hence |φ(G) ∩ A6| = (1/2)|φ(G)| = 60. 
But since φ(G) ∩ A6  φ(G), φ(G)  is simple by assumption, and |φ(G) ∩ A6| = 60, then 
we have a contradiction.  
If φ(G) ≤ A6, then φ(G) ∩ A6 = φ(G), hence |φ(G) ∩ A6| = |φ(G)| = 120.   
So [A6: φ(G) ∩ A6] = 360/120 = 3. 
Then by the Representation on Cosets theorem,  
∃ ψ : A6 → S3 where ker ψ ≤ A6/φ(G) ∩ A6.  And since A6 is simple, then ker ψ = {(1)}. 
Thus, by the 1st Isomorphism theorem, A6 ≅ ψ(A6).  
But ψ(A6)≤ S3 and |A6| = 120 > 6 = |S3|.   
So ker φ ≠ {e}, hence G is not simple. 
 
 

 
5.31  Prove that there is no simple group of order 150.  
Proof: 
Let G be group such that |G| = 150 = 32 • 52. 

n3|25 ⇒ 
n3 = 1, 5, 25 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, …, 25, … 

n3 = 1, 25 

n5|9 ⇒  
n5 = 1, 3, 9 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11, 16, … 

n5 = 1 

Since n5 = 1, then ∃ P5  G where P5 is a Sylow 5-subgroup of G. 
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Worksheet Problems: 
2. Prove the following: 
(a)  Every group of order 15 is Abelian.  
Proof: 
Let G be group such that |G| = 15 = 3 • 5. 

n3|5 ⇒ 
n3 = 1, 5 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, … 

n3 = 1 

n5|3 ⇒  
n5 = 1, 3 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, … 

n5 = 1 

Since n3 = 1, and n5 = 1, then ∃ P3  G and ∃ P5  G where P3 is a Sylow 3-subgroup of G  
and P5 is a Sylow 5-subgroup of G. 

Since |P3| = 3 and |P5| = 5, then by Corollary 2.45 (Every group of prime order is cyclic.) 

∃ a, b ∈ G such that (a) = 3, (b) = 5, 〈a〉 = P3, and 〈b〉 = P5. 

Consider 〈a〉〈b〉.   

We know 〈a〉〈b〉 ≤ G.  And (|〈a〉|, |〈b〉|) = 1, hence |〈a〉〈b〉| = 15 = |G|.   ∴  〈a〉〈b〉 = G. 

Also, 〈a〉 ∩ 〈b〉 = {e}.  And so G is the internal direct product of 〈a〉 and 〈b〉. 

And by Direct Products Theorem 4 (If G is the internal direct product of H and K, then 

HK ≅ H × K.), G ≅ 〈a〉 × 〈b〉.  But 〈a〉 ≅ Z3 and 〈b〉 ≅ Z5 so G ≅ Z3 × Z5.  And by Finite 

Abelian Groups, Exercise 1, (Zn
 × Zm

  ≅ Znm
 if and only if (n, m) = 1.), we have G ≅ Z15. 

Since Z15 is cyclic, then G is cyclic, hence Abelian. 
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2.  (b)  There are no more than 4 non-isomorphic groups of order 30.  
Proof: 
Let G be group such that |G| = 30 = 2 • 3 • 5. 

n2|15 ⇒ 
n2 = 1, 3, 5, 15 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, 5, 15, … 

n2 = 1, 3, 5, 15 

n3|10 ⇒ 
n3 = 1, 2, 5, 10 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, 7, 10, … 

n3 = 1, 10 

n5|6 ⇒  
n5 = 1, 2, 3, 6 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11, 16, … 

n5 = 1, 6 

If  n3 = 10 and n5 = 9, then we need 24 distinct elements of order 5 and 20 distinct 
elements of order 3, a contradiction to |G| = 30. 
∴  Either n3 = 1 or n5 = 1.  If n3 = 1, then ∃ a ∈ G such that (a) = 3, 〈a〉 = P3 and 〈a〉  G. 
And since and n5 = 1, 6, we also have that ∃ b ∈ G such that (b) = 5, and 〈b〉 = P5. 
By Direct Products, Exercise 2 (H ≤ G, K ≤ G, H  G or K  G ⇒ HK ≤ G), we have that 
〈a〉〈b〉 ≤ G and 〈a〉〈b〉 ≅ Z15.by part (a).  Thus, ∃ c ∈ G such that (c) = 15 and 〈c〉 ≤ G. 
By similar argument, if n5 = 1 and n3 = 1, 10 we have the same result. 
Since [G: 〈c〉] = 2, then 〈c〉  G.  So by Cauchy’s theorem, ∃ d ∈ G such that (d) = 2. 
So 〈c〉  G gives us that d〈c〉d–1 ∈ 〈c〉.  Hence dcd–1 = cn where 0 ≤ n ≤ 14. 
Thus c = d–1cnd = dcnd–1 = (dcd–1)n = (cn)n = 

€ 

cn
2

.  ∴  e = 

€ 

cn
2−1.  By corollary to Lagrange’s 

theorem, 15⏐n2 – 1.  So n2 – 1 = 1, 4, 11, or 14.  This gives us the following possible 
groups isomorphic to G: 
〈c, d: c15 = 1 = d2; cdc–1 = d〉, 〈c, d: c15 = 1 = d2; cdc–1 = d4〉, 〈c, d: c15 = 1 = d2; cdc–1 = d11〉, 
〈c, d: c15 = 1 = d2; cdc–1 = d14〉. 
Thus, there are no more than 4 non-isomorphic groups of order 30. 

 
(c)  There are at least 4 non-isomorphic groups of order 30.  (Describe them in terms of 
groups that we know and explain how you know that the four you’ve described are non-
isomorphic.  
Proof: 
|Z30| = |D30| = |D10 × Z  3| = |D6 × Z  5| = 30. 
Z30 has an element of order 30. 
D30 is not cyclic and has 15 elements of order 2. 
D10 × Z  3 has only 1 element of order 2 and 5 elements of order 6. 
D6 × Z  5 has only 1 element of order 6 and only 1 element of order 2. 
∴  None of the 4 groups have the same number of elements of the same order, hence 
none of them are isomorphic to each other. 
∴  There are at least 4 non-isomorphic groups of order 30. 
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3.  Let G be a group of order 48.  Show that the intersection of any two distinct  
Sylow 2-subgroups of G has order 8.  
Proof: 
48 = 24 • 3. 

n2|3 ⇒ 
n2 = 1, 3 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, … 

n2 = 1, 3 

n3|16 ⇒ 
n3 = 1, 2, 4, 8, 16 

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, 7, …, 16, … 

n3 = 1, 4, 16 

By hypothesis, we assume n2 = 3 (i.e. ∃ P2, P2’, and P2” , distinct Sylow 2-subgroups of G, 
each of order 16.). 
Note that |P2 ∩ P2’| ≠ 16 as the subgroups are distinct, hence |P2 ∩ P2’|  = 1, 2, 4, or 8. 
Since n2 = [G:NG(P2)] = 3 = [G:P2], then NG(P2) = P2. 
By the Representation of Cosets theorem, ∃ φ:G → S3 such that ker φ ≤ P2. 
Since |G| = 48 and |S3| = 6, then the map is an 8 to 1 map, hence |ker φ| ≥ 8. 
We know ~( P2  G) but ker φ  G, so ker φ ≠ P2. 
We also know P2 is conjugate to P2’, so ∃ g ∈ G such that P2’ = gP2g–1. 
Since ker φ  G, then g(ker φ)g–1 = ker φ.   
And, since ker φ ≤ P2, ker φ = g(ker φ)g–1 ⊆ gP2g–1 = P2’. 
∴  ker φ ⊆ P2 ∩ P2’.   
Since |ker φ| ≥ 8, ker φ ⊆ P2 ∩ P2’, and |P2 ∩ P2’| ≤ 8, then |P2 ∩ P2’| = 8. 
∴ The intersection of any two distinct Sylow 2-subgroups of G has order 8. 

 
4.  Let G be a group with |G| = 56.  Prove that G is not simple.  
Proof: 
56 = 23 • 7. 

n2|7 ⇒ 
n2 = 1, 7 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, 5, 7, … 

n2 = 1, 7 

n7|8 ⇒ 
n7 = 1, 2, 4, 8 

 n7 ≡ 1 (mod 7) ⇒ 
 n7 = 1, 4, 7, … 

n7 = 1, 8 

Assume G is simple, then n2 ≠ 1 and n7 ≠ 1.  Thus, n2 = 7 and n7 = 8, which gives us 7 
Sylow 2-subgroups each of order 8 and 8 Sylow 7-subgroups each of order 7.   
Since 7 is prime, then 7 • 6 = 42 elements of our group of order 56 have order 7. 
The 7 subgroups of order 8 have intersections of 1, 2, or 4 elements, hence we have a 
minimum of 5 • 4 = 20 elements of order ≠ 7, thus exceeding the size of our group. 
∴ n2 = 1 or n7 = 1, hence G is not simple. 
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5.  What is the smallest composite integer n such that there is a unique group of order n?  
 15. 
Proof: 
Any group with order an even composite integer is isomorphic to a dihedral group as well 
as a cyclic group.  So n must be odd.  The smallest odd composite integer is 15. 
By Exercise 1 (a) above, any group of order 15 is cyclic and Abelian, hence unique. 

 
6.  Let G be a noncyclic group of order 21. 
(a)  How many 3-Sylow subgroups does G have?   7. 
Proof: 
n3|7 ⇒ 
n3 = 1, 7 

 n3 ≡ 1 (mod 3) ⇒  
 n3 = 1, 4, 7, … 

n3 = 1, 7 

n7|3 ⇒ 
n7 = 1, 3 

 n7 ≡ 1 (mod 7) ⇒ 
 n7 = 1, 4, … 

n7 = 1 

If n3 = 1, and n7 = 1, then ∃ P3  G and ∃ P7  G where P3 is a Sylow 3-subgroup of G and 

P7 is a Sylow 7-subgroup of G. 

Since |P3| = 3 and |P7| = 7, then  

∃ a, b ∈ G such that (a) = 3, (b) = 7, 〈a〉 = P3, and 〈b〉 = P7. 

We know 〈a〉〈b〉 ≤ G.  And (|〈a〉|, |〈b〉|) = 1, hence |〈a〉〈b〉| = 21 = |G|.   ∴  〈a〉〈b〉 = G. 

Also, 〈a〉 ∩ 〈b〉 = {e}.  And so G is the internal direct product of 〈a〉 and 〈b〉. 

Thus, G ≅ 〈a〉 × 〈b〉.  But 〈a〉 ≅ Z3 and 〈b〉 ≅ Z7 so G ≅ Z3 × Z7.  And so we have G ≅ Z21, 

which is cyclic. 

∴  n3 = 7, hence G has 7 Sylow 3-subgroups. 
 

(b)  Prove that G has 14 elements of order 3.  
Proof: 
Since G has 7 distinct Sylow 3-subgroups, then G has 7 • 2 distinct elements of order 3. 
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7.  Let G be a group of order 60.  Show that G has exactly four elements of order 5 or 
exactly 24 elements of order 5.  Which of these cases holds for A5?  
Proof: 
60 = 22 • 3 • 5 
n2|15 ⇒ 
n2 = 1, 3, 5, 15 

 n2 ≡ 1 (mod 2) ⇒  
 n2 = 1, 3, 5, 15, … 

n2 = 1, 3, 5, 15 

n3|20 ⇒ 
n3 = 1, 2, 4, 5, 10, 20  

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, 7, 10, … 

n3 = 1, 4, 10 

n5|12 ⇒  
n5 = 1, 2, 3, 4, 6, 12 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11, 16, … 

n5 = 1, 6 

If n5 = 1, then there is a unique Sylow 5-subgroup of G such that |P5| = 5, hence G has 
exactly four elements of order 5. 
If n5 = 6, then there are 6 unique Sylow 5-subgroups of G, each of order 5. 
Since the subgroups are unique and of prime order, the intersection of any 2 of them has 
order 1.  ∴  In this case, G has exactly 6 • 4 = 24 elements of order 5. 
Since A5 is simple, then n5 ≠ 1, hence A5 has exactly 24 elements of order 5. 

 
8.  Let G be a group of order 60 and let H  G with |H| = 2.  Show 
(a)  G has normal subgroups of order 6, 10, and 30,  
Proof: 
Since H  G with |H| = 2, then G/H is a group and |G/H| = 30.   
And by Exercise 2 (b) ∃ S* ≤ G/H such that S* is cyclic, S*  G/H, and |S*| = 15. 
By Exercise 2 (a) ∃ T* ≤ S*/H such that T* is cyclic, T*  G/H, and |T*| = 5, and 
∃ U* ≤ S*/H such that U* is cyclic, U*  G/H, and |U*| = 3, 
So, by the Correspondence theorem,  
∃ S ≤ G, T ≤ G, and U ≤ G such that  
S* = S/H, S  G, |S| = 30, 
T* = T/H, T  G, |T| = 10, and  
S* = U/H, U  G, |U| = 6 

 
(b)  G has subgroups of order 12 and 20, and  
Proof: 
Since |G/H| = 30, then ∃ P3*, P5* both normal to G/H, and ∃ P2*≤ G/H. 
So P2*P3* ≤ G/H, and P2*P5* ≤ G/H, where |P2*P3*| = 6 and |P2*P5*| = 10. 
By the Correspondence theorem ∃ H12 and H20, subgroups of G, such that H12 = P2*P3*/H, 
H20 = P2*P5*/H, |H12| = 12, and |H20| = 20. 

 
(c)  G has a cyclic subgroup of order 30.  
Proof: 
(stuck) 
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9.  Let G be a group of order 60.  If the Sylow 3-subgroup is normal, show that the Sylow 
5-subgroup is also normal.  
Proof: 
(stuck) 

 
 
10.  Let |G| = 72 • 13.  Prove G is Abelian.  
Proof: 
n7|13 ⇒ 
n7 = 1, 13 

 n7 ≡ 1 (mod 7) ⇒  
 n7 = 1, 4, 7, … 

n7 = 1 

n13|49 ⇒ 
n13 = 1, 7, 49 

 n13 ≡ 1 (mod 13) ⇒ 
 n13 = 1, 12, … 

n13 = 1 

Since n7 = 1 and n13 = 1, then by Proposition 5.39 (A finite group G all of whose Sylow 
subgroups are normal is the direct product of its Sylow subgroups.), G = P7 × P13.  Since 
|P7 |= 49, then P7 is Abelian.  ∴ P7 ≅ Z49 or P7 ≅ Z7 × Z7.  And since 13 is prime, P13 ≅ Z13. 
Thus, G ≅ Z49 × Z13, or G ≅ Z7 × Z7 × Z13, hence G is Abelian. 

 
 

A group is said to be solvable if there exist subgroups G0, G1, …, Gk such that  
{e} = Gk  Gk–1   G2  G1  G0 = G 

and such that Gi/Gi+1 is Abelian for all i.  This sequence of subgroups is called a solvable 
series for G. 

 
11.  Prove that S4 is solvable.  
Proof: 
{(1)}  V4  A4  S4. 
[S4: A4] = 2.  ∴ S4/ A4 is Abelian since 2 is prime. 
[A4: V4] = 3.  ∴ A4: V4 is Abelian since 3 is prime. 
V4/{(1)} = V4 and we know V4 is Abelian. 
∴ S4 is solvable. 

 
12.  Prove that if G is solvable and H ≤ G, then H is solvable.  
Proof: 
G is solvable ⇒ exist subgroups G0, G1, …, Gk such that  
{e} = Gk  Gk–1   G2  G1  G0 = G. 
Let H0 = H and Hi = H ∩ Gi. Then by the 2nd Isomorphism theorem, H ∩ Gi  H. 
(stuck) 
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13.  Suppose G is solvable and φ: G → 

€ 

G  is a homomorphism from G to 

€ 

G .  Prove φ(G) 
is solvable.  
Proof: 
G is solvable ⇒ exist subgroups G0, G1, …, Gk such that  
{e} = Gk  Gk–1   G2  G1  G0 = G. 
Suppose ker φ = {e}, then by the Correspondence theorem,  
φ(Gi)  φ(Gi–1) for every i ∈ {0, 1, …, k} and φ(G0) = φ(

€ 

G ). 
Suppose Gj = ker φ for some j ∈ {0, 1, …, k}, then by the Correspondence theorem, 
φ(Gi)  φ(Gi–1) for every i ∈ {0, 1, …, j}, φ(G0) = φ(

€ 

G ), and  
φ(Gm) ⊆ {

€ 

eG } for every m ∈ {j +1, …, k}, hence φ(Gm)  φ(Gm–1). 
Need to show φ(Gi–1)/φ(Gi) is Abelian for every i. 
(stuck) 
∴  

€ 

G  is solvable. 
 

14.  Let G be a group with H  G.  Suppose H and G/H are both solvable.  Prove G is 
solvable.  
Proof: 
H is solvable ⇒ exist subgroups H0, H1, …, Hk of H such that  
{e} = Hk  Hk–1   H2  H1  H0 = H. 
G/H is solvable ⇒ exist subgroups N0, N1, …, Nk of G/H such that  
{e} = Nk  Nk–1   N2  N1  N0 = N. 
By the Correspondence theorem, there are subgroups Pi of G with H ≤ Pi  
such that Pi / H = Ni and Pi  Pi–1.  So H  Pk/H   Pk–1/H    P1/H  P0/H = G/H. 
By the 3rd Isomorphism theorem, Pi/Pi–1 ≅ (Pi/H)/(Pi–1/H).  And since (Pi/H)/(Pi–1/H) is 
Abelian, then Pi/Pi–1 is Abelian.  
∴ {e} = Hk  Hk–1   H2  H1  H0 = H  Pk  Pk–1    P1  P0 = G. 
∴  G is solvable. 

 
15.  Let G be a group with H ≤ G and K  G.  Prove that if H and K are both solvable, 
then HK is solvable.  
Proof: 
 

 
16.  Let G be a group of order 495 = 32 • 5 • 11. 
(a)  What are the possible numbers of Sylow subgroups?  (ie. what are the possibilities 
for n3, n5, and n11?)  
Proof: 
n3|55 ⇒ 
n3 = 1, 5, 11, 55  

 n3 ≡ 1 (mod 3) ⇒ 
 n3 = 1, 4, …, 55, … 

n3 = 1, 55 

n5|99 ⇒  
n5 = 1, 3, 9, 11, 33, 99 

 n5 ≡ 1 (mod 5) ⇒ 
 n5 = 1, 6, 11, 16, … 

n5 = 1, 11 

n11|45 ⇒ 
n11 = 1, 3, 5, 9, 15, 45 

 n11 ≡ 1 (mod 11) ⇒  
 n11 = 1, 10, …, 45, … 

n11 = 1, 45 
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(b)  Prove that a 5-Sylow subgroup or an 11-Sylow subgroup is normal.  
Proof: 
If n5 = 11 and n11 = 45, then there are 11 distinct subgroups of order 5 and 45 distinct 
subgroups of order 11.  Thus, G contains 11 • 4 = 44 elements of order 5 and 45 • 10 = 
450 elements of order 11.  We also have at least one subgroup of order 9 which contains 
8 elements of order 3 or 9.  So G contain 44 + 450 + 8 = 502 elements, a contradiction to 
|G| = 495.  ∴ n5 = 11 or n11 = 45, thus a 5-Sylow subgroup or an 11-Sylow subgroup is 
normal in G. 

 
(c)  Let K be the normal subgroup from part (b).  Prove G/K is isomorphic to Zm × Z3 × Z3 
or Zm × Z9 where m ∈ {5, 11}.  

Proof: 
Let M be the other subgroup from part (b) and let P3 be a Sylow 3-subgroup of G.   
Suppose  m = 5, then |G/K| = 32 • 5 • 11 = 5 = 32 • 11.  So n3 = 1 and n11 = 1. 
Thus by Proposition 5.39 (A finite group G all of whose Sylow subgroups are normal is 
the direct product of its Sylow subgroups.), G/K ≅ P3P11. Since |P3 | = 9, then P3 is 
Abelian.  ∴ P3 ≅ Z9 or P3 ≅ Z3 × Z3. And since 11 is prime, P11 ≅ Z11. 
Thus, G ≅ Z11 × Z9, or G ≅ Z11 × Z3 × Z3. 
If m = 11, then by similar proof we have G ≅ Z5 × Z9, or G ≅ Z5 × Z3 × Z3. 

 
(d)  Let H5 be a 5-Sylow subgroup of G and let H11 be an 11-Sylow subgroup of G.  
Prove H5H11  G.   
(part (c) might be helpful – one of these two subgroups is the K in part (c)).  
Proof: 
By the Second Isomorphism theorem, H5H11/H5 ≅ H11/H5 ∩ H11.  Since H5 ∩ H11 = {e}, 
then H5H11/H5 ≅ H11.  And since | H11| = 11, then H11 ≅ Z11. 
Since, by part (c) G/H5 is isomorphic to Z11 × Z3 × Z3 or Z11 × Z9, and Z11   Z11 × Z3 × Z3, 
and Z11   Z11 × Z9, then by the Correspondence theorem, H5H11  G. 

 
(e)  Find a solvable series for G.  
Proof: 
{e}  H5  H5H11  G.  

 


