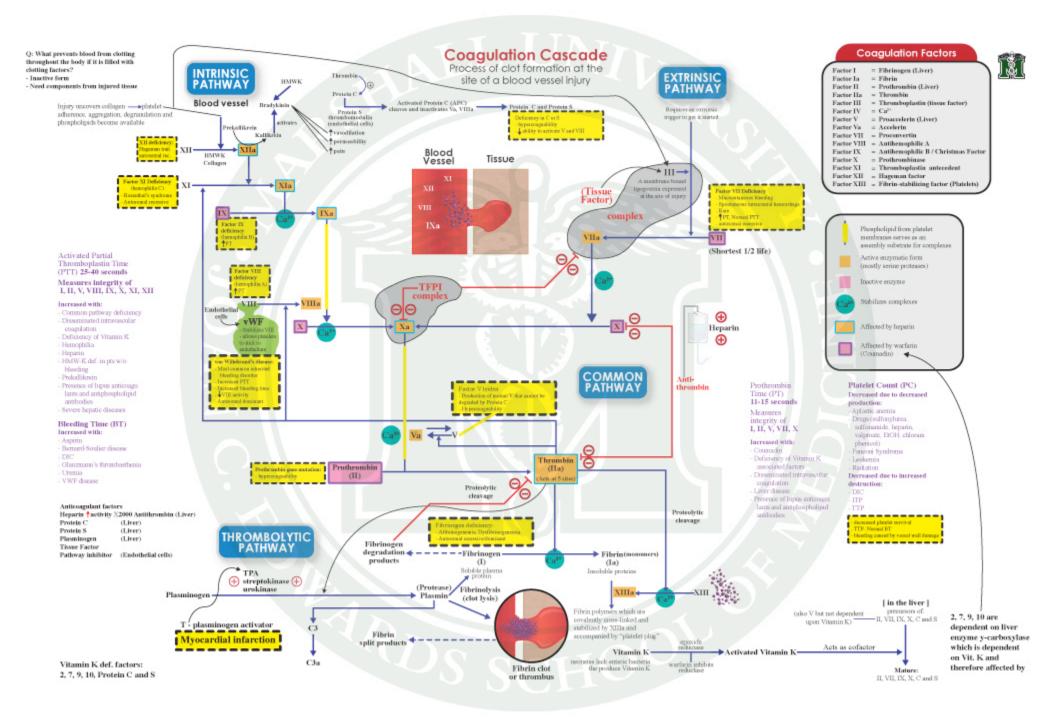

Liver Disease & Venous Thromboembolism

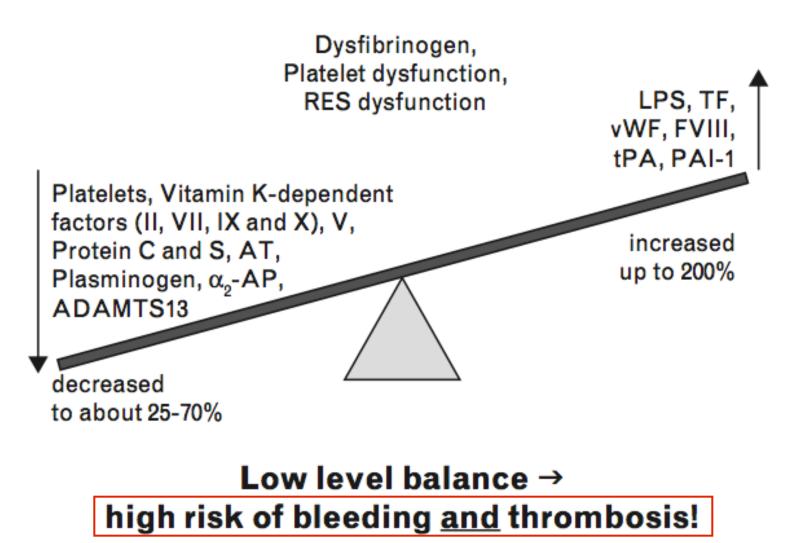
Does it really de(liver) less risk?

Ernest Law, BSc (Pharm), ACPR Doctor of Pharmacy Student, Class of 2014 Faculty of Pharmaceutical Sciences, University of British Columbia <u>Ernest.Law@alumni.ubc.ca</u>


"Of course we should order

some VTE prophylaxis for this

patient...wait, what's their INR?


Elevated?! Never mind, they're

AUTO-ANTICOAGULATED..."

http://musom.marshall.edu/GraphicDesign/med-illustration.asp

Pathophysiology

Prothrombin Time & International Normalized Ratio (INR)

- Factors I, <u>II</u>, V, <u>VII</u> and <u>X</u>
- Not sensitive to intrinsic pathway factors (VIII, <u>IX</u>, XI, XII, XIII)
- Does not assess levels of protein C&S, antithrombin and von Willebrand
- Not intended to gauge coagulation status outside of pharmacologic therapy

CHEST 2012 VTE prophylaxis guidelines

Risk Factor ^a	Total Patients, No. (%) ($N = 10,866$)	OR (95% CI)
Active gastroduodenal ulcer	236 (2.2)	4.15 (2.21-7.77)
Bleeding in 3 mo before admission	231 (2.2)	3.64 (2.21-5.99)
Platelet count $< 50 \times 10^{9}$ /L	179 (1.7)	3.37 (1.84-6.18)
$Age \ge 85 \text{ y} (vs < 40 \text{ y})$	1,178 (10.8)	2.96 (1.43-6.15)
Hepatic failure ($INR > 1.5$)	219 (2.0)	2.18 (1.10-4.33)
Severe renal failure (GFR < 30 mL/min/m ²)	1,084 (11.0)	2.14 (1.44-3.20)
ICU or CCU admission	923 (8.5)	2.10 (1.42-3.10)
Central venous catheter	820 (7.5)	1.85 (1.18-2.90)
Rheumatic disease	740 (6.8)	1.78 (1.09-2.89)
Current cancer	1,166 (10.7)	1.78 (1.20-2.63)
Male sex	5,367 (49.4)	1.48 (1.10-1.99)

 Table 3—Independent Risk Factors for Bleeding in 10,866 Hospitalized Medical Patient¹⁰

Data shown were obtained by multiple logistic regression analysis for characteristics at admission independently associated with in-hospital bleeding (major bleeding and clinically relevant nonmajor bleeding combined). GFR = glomerular filtration rate; **INR** = international normalized ratio. ^aAlthough not specifically studied in medical patients, one would also expect dual antiplatelet therapy to increase the risk of bleeding.

Clinical Question

Is the INR a useful parameter for assessing the benefit of VTE prophylaxis in hospitalized adult patients with liver disease?

Search Strategy

Search terms	Venous thromboembolism (VTE), deep vein thrombosis (DVT), prophylaxis, cirrhosis, liver disease, liver failure, chronic liver disease, coagulopathy		
Databases	Google Scholar, MEDLINE, EMBASE, IPA, WHO ICTRP		
Limits	Adults, English, Fully published text		

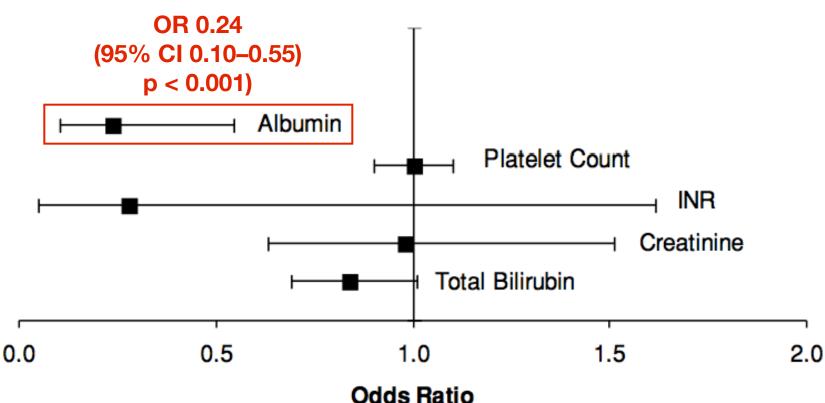
Search Results

RCTs	None; none upcoming
Cohort	Wu et al. Aldawood et al. Barclay et al.
Case-control	Northup et al. Gulley et al. Sogaard et al.
Cross- sectional	Edwards et al.

Northup et al. (2006)

D	Retrospective case-control; 1993-2001
Ρ	N=113 inpatients with cirrhosis (by liver biopsy or history) and newly diagnosed VTE; occurrence of VTE (doppler, CT angiography or direct imaging) Excluded: CVC releated thrombosis, portal/splenic/mesenteric vein thrombosis, prior history of PE or DVT, transplantation during admission, on anticoagulation
I	N=113 controls with cirrhosis but without VTE (matched by age, sex, race, cancer and other co-morbidities, and surgical procedures performed)
E	Risk factors associated with VTE
S	Multivariate conditional logistic regression analyses

Northup et al. (2006)


(95% CI of mean)	Cirrhosis Patients with	Cirrhosis Patients without	
[Interquartile range]	VTE, Cases ($N = 113$)	VTE, Controls ($N = 113$)	<i>p</i> -Value
Admission MELD score*	11.5 (9.7–13.2) [3.5–17.9]	12.6 (10.8–14.4) [5.4–18.8]	0.35
Albumin g/dL	2.85 (2.70-3.01) [2.2-3.3]	3.10 (2.96–3.23) [2.6–3.7]	0.01
Total bilirubin mg/dL	2.10 (1.55–2.65) [0.7–2.7]	3.58 (2.59–4.56) [0.7–4.3]	0.14
International normalized ratio (INR)	1.40 (1.34–1.46) [1.2–1.5]	1.47 (1.38–1.55) [1.2–1.5]	0.50
Creatinine mg/dL	1.81 (1.44–2.19) [0.9–1.9]	1.50 (1.22–1.77) [0.8–1.5]	0.21
Platelet count $\times 10^3/\mu L$	198 (175–222) [112–263]	170 (149–192) [84–234]	0.08

Laboratory values are expressed as mean with 95% confidence interval. The interquartile range is expressed in brackets. *Model for end-stage liver disease score = $11.2 \ln(INR) + 3.78 \ln(\text{total bilirubin}) + 9.57 \ln(\text{creatinine}) + 6.43$.

28.5 g/L vs. 31 g/L (difference of 2.5 g/L)

Am J Gastroenterol. 2006; 101:1524-8.

Figure 1. Odds ratios of laboratory predictors of VTE with upper and lower 95% confidence limits. Odds ratios are based on conditional logistic regression multivariate model. All odds ratios confidence intervals cross 1.0 except albumin.

Am J Gastroenterol. 2006; 101:1524-8.

Northup et al. (2006)

• "Low serum albumin was strongly predictive of increased risk for

developing VTE"

Am J Gastroenterol. 2006; 101:1524-8.

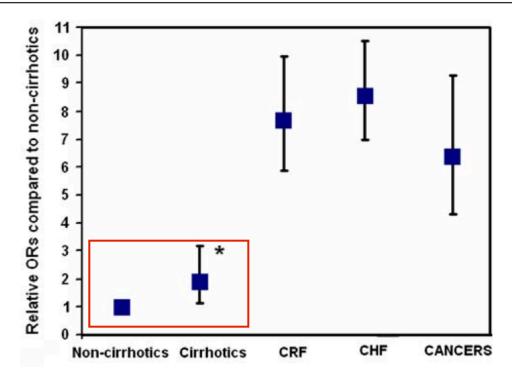
Northup et al. (2006)

Strengths	 Appropriate to use case-control given low VTE rate Reasonable matching parameters Evaluates of relationships between various lab parameters
Limitations	 Small, retrospective design (type II error) Albumin = acute phase reactant Difficult to interpret magnitude of risk with albumin Utility of pharmacologic prophylaxis?

D	Retrospective case-control study; 1995-2005
Ρ	N=963 cases: hospitalized patients with cirrhosis and at least 1 presentation/history of complication Excluded: patients receiving anticoagulation
I	N=12,405 controls: patients without cirrhosis; two analyses +/- significant morbidities
E	Frequency of VTE in cirrhosis vs. Non-cirrhotic patients Indicators of higher VTE rates
S	Univariate and multivariate logistic regression analyses OR with 95% Cl

Frequency of VTE: 1.87% (cirrhosis) vs. 0.98% (no cirrhosis) P=0.007

Factors associated with DVT/PE	Univariate analysis		Multivariate analysis		
	OR (95% CI)	P value	OR (95% CI)	P value	
Presence of cirrhosis	1.93 (1.17–3.18)	0.001	0.86 (0.28–2.63)	0.06	
Charlson Index	0.89 (083-0.96)	0.003	0.93 (0.74–1.16)	0.44	
Hemoglobin (g/dL)	1.08 (1.01-1.15)	0.02	0.83 (0.70-1.00)	0.06	
INR	0.92 (0.85-0.98)	0.02	1.03 (0.46-2.30)	0.95	
PTT (s)	0.89 (0.87-0.97)	0.04	0.88 (0.84–0.94)	0.04	
Albumin (g/dL)	0.36 (0.29-0.42)	0.001	0.47 (0.23-0.93)	0.03	
Platelet counts (cells/mm ³)	1.00 (0.99–1.01)	0.50			
Total bilirubin (mg/dL)	0.99 (0.91-1.07)	0.78	PTT (OR 0.	88)-	
AST (IU/L)	1.00 (0.99–1.01)	0.57		-	
ALT (IU/L)	1.00 (0.98-1.01)	0.31	Albumin (OR	0.47)	
Blood urea nitrogen (mg/dL)	0.99 (0.98–1.00)	0.17	_	-	
Creatinine (mg/dL)	0.97 (0.88-1.08)	0.64	_	-	


Table 2 Factors associated with DVT/PE in the entire study cohort (n = 13,368)

OR, Odds ratio; 95% CI, 95% confidence interval

Dig Dis Sci (2008) 53:3012–3017

Table 3 Selected demographics and characteristics of individuals with cirrhosis and controls with selected co-morbid illnesses

	Cirrhosis $(n = 963)$	Subjects with chronic renal failure ($n = 1692$)	Subjects with congestive heart failure $(n = 4489)$	Subjects with cancers $(n = 673)$	P value
Age (year)	50.5 ± 11	55 ± 12	50.0 ± 11	50 ± 9.7	0.45
Female (%)	32	40	36	40	0.10
Caucasian (%)	60	62	58	54	0.34
Charlson Index	3.2 ± 1.9	2.0 ± 1.4	2.2 ± 1.0	3.0 ± 1.6	0.26
Cases with diagnosis of DVT/PE (%)	18 (1.87%)	120 (7.0%)	348 (7.75%)	41 (6.1%)	<0.05

Dig Dis Sci (2008) 53:3012–3017

- "Patients with cirrhosis do not have a lower risk of DVT/PE than noncirrhotic controls without other significant co-morbidities..."
- "...PTT and serum albumin were found to be independently predictive of DVT/PE..."

Dig Dis Sci (2008) 53:3012–3017

Strengths	 Appropriate to use case-control given low VTE rate Reasonable matching parameters Evaluated impact of co-morbidities in patients with cirrhosis
Limitations	 Small, retrospective design Albumin as acute phase reactant Does not assess utility of pharmacologic prophylaxis

D	Retrospective chart review; 2000-2007				
Р	N=190 hospitalized adult patients with chronic liver disease (alcoholic, viral, cryptogenic and NASH)				
	Excluded: anticoagulation, known VTE, palliative care				
I	Patient divided into INR quartiles				
	[<1.4, n=47] [1.4-1.6, n=61] [1.7-2.1, n=38] [>2.1, n=44]				
Е	Occurrence of VTE				
S	Descriptive statistics Chi-squared/Fisher exact tests/Kruskal-Wallis/ANOVA				

		•	0			
Characteristic	First Quartile INR < 1.4 (n = 47)	Second Quartile $1.4 \le INR < 1.7$ (n = 61)	Third Quartile $1.7 \le INR < 2.2$ (n = 38)	Fourth Quartile INR \geq 2.2 (n = 44)	All (N = 190)	P Value
In-hospital VTE Hospital mortality	3(6) 2(4)	3 (5) 2 (3)	4(11) 5(13)	2(5) 14(32)	$12 (6.3) \\ 23 (12.1)$.665 <.001
Hospital LOS, d (IQR)	3 (5)	4 (6)	4 (10)	5 (8)	4 (6)	.221
Diagnostic testing	0(0)	4 (0)	1(10)	0(0)	4(0)	.221
VD-US	10 (21.3)	19 (31.1)	12 (31.6)	19 (43.2)	60 (31.6)	.168
Spiral CT scan	10 (21.3)	16 (26.3)	11 (28.9)	9(20.5)	46 (24.2)	.763
VQ scan	2(4.3)	1(1.6)	1(2.6)	1(2.3)	5(2.6)	.864
DVT prophylaxis						
None	33 (70)	46 (75)	29 (76)	34 (77)	142 (74.7)	.603
Pharmacologic	7(15)	5 (8)	1(3)	4 (9)	17(9)	.603
Mechanical	7 (15)	10 (16)	8 (21)	6 (14)	31 (16.3)	.603

 Table 3—Primary and Secondary Outcomes

Data are presented as No. (%) unless otherwise indicated. VD-US = venous Doppler ultrasound. VQ = ventilation-perfusion. See Table 1 for expansion of other abbreviations.

Chest. 2010; 137:1145-9.

• "An elevated INR in the setting of CLD does not appear to protect against the development of hospital-acquired VTE."

Chest. 2010; 137:1145-9.

Strengths	 Assessed "exposure-response" of INR elevation and VTE incidence Baseline characteristics appear balanced Appropriate outcome of symptomatic VTEs
Limitations	 Retrospective; documentation/code dependent Small sample size / low number of events VTE risk score (HF, transfusions, COPD, infections, etc) - 80% patients with cancer No analysis of bleeding No analysis of prophylaxis (data collected)

D	Retrospective chart review; 2008-2009		
Р	N=513 patients with INR >1.5 or PLT <100 x 10 ⁶ admitted >72 hours to surgical ICU between		
	Excluded: known VTE on admission, missing data for inclusion, heparin-induced thrombocytopenia		
	N=241, Chemical prophylaxis (included warfarin, IV UFH, etc)		
	N=272, No chemical prophylaxis		
E	Incidence of VTE (PE and DVT) - weekly duplex US (no bleeding outcomes)		
S	Chi-squared/Fisher exact test		

Variable	Overall $(n = 517)$	VTE Prophylaxis (n = 241)	No VTE Prophylaxis ($n = 272$)	р
Age, mean (SD)	625.6 (17.7)	65.8 (18.1)	65.4 (17.4)	0.8
Male sex	62.2%	61.4%	62.9%	0.78
Platelets, mean (SD)	105.9 (76.6)	115.7 (83.8)	97.2 (68.7)	0.01
Trauma patients	8.3%	8%	8.6%	0.87
Postoperative patients	82.6%	83.1%	82.1%	0.81
Cancer patients	26.1%	29.6%	22.9%	0.102
INR, mean (SD)	2.67 (2.69)	2.58 (2.10)	2.76 (3.12)	>0.95
APACHE, mean (SD)	24.4 (9.5)	23.9 (9.9)	24.8 (9.1)	0.31
Hospital LOS, mean (SD)	9.6 (10.3)	11.4 (9.6)	8.1 (10.7)	< 0.000
ICU mortality	19.5%	19.1%	19.9%	0.91
Hospital mortality	25.9%	28.2%	23.9%	0.27

TABLE 2. Incidence of VTE and PE

Variable	Overall	VTE Prophylaxis	No VTE Prophylaxis	р
Incidence of VTE	84 (16.4%)	41 (17%)	43 (15.8%)	0.72
Incidence of PE	4 (0.8%)	3 (1.2%)	1 (0.4%)	0.35
		N=242	N=271	

 "Coagulopathic critically ill surgical patients remain at significant risk for VTE. Unfortunately, chemical VTE prophylaxis does not seem to decrease this risk."

Strengths	 Only known study to evaluate ICU patients Assessed incidence of VTE with chemical prophylaxis vs. none
Limitations	 Retrospective Bleeding??? No attempt to adjust for bias/confounding No adjustment for consistency/duration of chemical prophylaxis

D	Single-center, retrospective cohort study; 2008-2011	
Р	N=1581 cohort with chronic liver disease hospitalized (alcoholic, viral, cryptogenic, NASH)	
	Excluded: active thrombosis, anticoagulation	
Ι	Exposure: VTE prophylaxis (appropriate dose) Unexposed: No VTE prophylaxis	
E	Primary outcomes: (1) occurrence of VTE or (2) bleeding during hospitalization	
S	Multivariate conditional logistic regression	

Table 2. Outcome Measures				
Outcome (No.)	No VTE Prophylaxis (n=1189)	VTE Prophylaxis (n=392)	p Value	
Documented bleed	123 (10.3%)	8 (2.0%)	<0.001	
VTE	21 (1.8%)	2 (0.5%)	0.050	

VTE = venous thromboembolism.

Table 3. Risk Factors for Venous Thromboembolism in Patients With Chronic Liver Disease

	Odds Ratio	95% Confidence Interval
VTE prophylaxis	0.34	0.042-0.88
Active malignancy	8.76	2.56-29.58
Trauma or surgery during hospitalization	10.29	1.18-89.51
History of VTE	26.48	6.93–101.16

VTE = venous thromboembolism.

Pharmacotherapy 2013;33(4):375–382

• "Pharmacologic VTE prophylaxis was associated with a decreased incidence of VTE in patients with CLD without an increased rate of bleeding and should be routinely considered on admission to the hospital."

Strengths	 Symptomatic VTE as outcome Sufficient sample size First to attempt at evaluating efficacy <u>and</u> safety of VTE prophylaxis in CLD Reasonable attempts to control bias with <u>multivariate regression</u>
Limitations	 Retrospective Relies on ICD-9 coding and chart documentation Differences in baseline characteristics may account for differences in rates of bleed/VTE

Summary

Study	Population	INR impact on VTE	Impact of pharmacologic prophylaxis on VTE risk
Northup et al. 2006	Cirrhosis		Not studied
Gulley et al. 2008	+/- cirrhosis +/- chronic diseases		Not studied
Dabbagh et al. 2010	All CLD in INR quartiles		Not studied

Summary

Study	Population	INR impact on VTE	Impact of pharmacologic prophylaxis
Edwards et al. 2011	Medical/Surgical ICU with mean INR 2.67	Not studied	↔ VTE? bleeding
Barclay et al. 2013	CLD with mean INR ~1.4		VTE bleeding

Conclusions

- Efficacy and safety of pharmacologic or mechanical prophylaxis for VTE is not well characterized
- Risk in non-cirrhotic patients are likely the same in cirrhotic patients
- Acute liver injury and risk of thrombosis/bleeding is unknown

Conclusions

Is the INR a useful parameter for assessing the benefit of VTE prophylaxis in hospitalized adult patients with liver disease?

Questions.