

The University of British Columbia - Okanagan Campus

3333 University Way, Kelowna, BC V1V 1V7

https://ok.ubc.ca/

VANT 151 Team 4

Model Name: VANT 151 Tricycle Project

Weight: 228.55 g Built to last: 1.0 year Duration of use: 1.0 year

Manufacturing Region

The choice of manufacturing region determines the energy sources and technologies used in the modeled material creation and manufacturing steps of the product's life cycle.

Use Region

The use region is used to determine the energy sources consumed during the product's use phase (if applicable) and the destination for the product at its end-of-life. Together with the manufacturing region, the use region is also used to estimate the environmental impacts associated with transporting the product from its manufacturing location to its use location.

Summary

Learn more about Life Cycle Assessment 🧼

Sustainability	Report				
Model Name:	VANT 151 Tricycle Projec	ct	Weight: Built to last: Duration of use:	228.55 g 1.0 year 1.0 year	
Assembly	Process		Use		
Region: Energy typ Energy am Built to las	nount:	North America None 0.00 kWh 1.0 year	Region: Energy type: Energy amou Duration of us	nt:	North America Electricity 82713.56 kWh 1.0 year
Transport	ation		End of Life		
Truck dista Train dista Ship distar Airplane D	nce:	2600 km 0.00 km 0.00 km 0.00 km	Recycled: Incinerated: Landfill:		33 % 13 % 54 %
Comments					

Sustainability Report VANT 151 Tricycle Project Weight: 228.55 g Built to last: 1.0 year Duration of use: 1.0 year Environmental Impact (calculated using CML impact assessment methodology) **Total Energy Consumed Carbon Footprint** Material: 0.979 kg CO₂e Material: 14 MJ Manufacturing: Manufacturing: 210 kg CO₂e 3100 MJ 6.7E+4 kg CO₂e Use: 9.7E+5 MJ 0.059 kg CO₂e Transportation: Transportation: 0.879 MJ End of Life: 0.126 kg CO₂e End of Life: 0.092 MJ 6.7E+4 kg CO₂e 9.7E+5 MJ **Air Acidification Water Eutrophication** Material: 5.1E-3 kg SO₂e Material: 2.3E-4 kg PO₄e Manufacturing: 0.053 kg PO₄e Manufacturing: 1.4 kg SO₂e 450 kg SO₂e Use: 16 kg PO₄e Transportation: 2.7E-4 kg SO₂e Transportation: 6.0E-5 kg PO₄e End of Life: 6.4E-5 kg SO₂e End of Life: 1.6E-4 kg PO₄e 450 kg SO₂e 16 kg PO₄e **Material Financial Impact** 0.50 USD

Comments

SOLIDWORKS

Sustainability Report					
Model Name:	VANT 151 Tricycle Project	Wei	eight:	228.55 g	
		Built	ilt to last:	1.0 year	
		Dura	ration of use:	1.0 year	

Component Environmental Impact

Top Ten Components Contributing Most to the Four Areas of Environmental Impact

Component	Carbon	Water	Air	Energy
Cargo Shelf	52	0.013	0.352	760
Frame	45	0.011	0.306	660
Rear Sprocket	32	7.9E-3	0.214	460
Rear Wheel	26	6.3E-3	0.172	370
Link Plate	16	3.9E-3	0.106	230
SG90 - Micro Servo 9g - Tower Pro.1	14	3.4E-3	0.092	200
Rear Axle	7.7	1.9E-3	0.052	110
Heat Sink	7.7	1.9E-3	0.052	110
Handlebar	6.4	1.6E-3	0.043	92
SG90 - Micro Servo 9g - Tower Pro.2	0.301	7.4E-5	2.0E-3	4.4

Comments

Click here for alternative units such as 'Miles Driven in a Car'

Baseline

Model Name: VANT 151 Tricycle Project

Weight: 230 g
Built to last: 1.0 year
Duration of use: 1.0 year

Manufacturing Region

The choice of manufacturing region determines the energy sources and technologies used in the modeled material creation and manufacturing steps of the product's life cycle.

Use Region

The use region is used to determine the energy sources consumed during the product's use phase (if applicable) and the destination for the product at its end-of-life. Together with the manufacturing region, the use region is also used to estimate the environmental impacts associated with transporting the product from its manufacturing location to its use location.

Comments

Sustainability Report			
Model Name: VANT 151 Tricyc BASELINE	le Project	Weight: 228.55 g Built to last: 1.0 year Duration of use: 1.0 year	
Assembly Process		Use	
Region: Energy type: Energy amount: Built to last:	North America None 0.00 MJ 1.0 year	Region: Energy type: Energy amount: Duration of use:	North America None 1.2E+6 MJ 1.0 year
Transportation		End of Life	
Truck distance: Train distance: Ship distance: Airplane Distance:	2600 km 0.00 km 0.00 km 0.00 km	Recycled: Incinerated: Landfill:	33 % 13 % 54 %
Comments			

Sustainability Report

Model Name: VANT 151 Tricycle Project

BASELINE

Environmental Impact Comparison

Carbon Footprint - Comparison

: 6.7E+4 kg CO₂e

: 9.6E+5 kg CO₂e

0.979 0.979

210 210

6.7E+4 9.6E+5

0.126 0.126

0.059

Total

Material

Use

End Of Life

Transportation

Manufacturing

Weight: 230 g
Built to last: 1.0 year
Duration of use: 1.0 year

New Design: Better

Worse

Original Design:

Baseline

Total Energy Consumed - Comparison

Total

: 9.7E+5 MJ : 1.4E+7 MJ

Material

14	
14	

Manufacturing

manara can mg		
3100		
3100		

Use

9.7E+5
1.4E+7

End Of Life

0.092	
0.092	

Transportation

The state of the s	(Dotesitation
	0.879
	0.879
51 P 23	

Air Acidification - Comparison

Total : 450 kg SO₂e : 6400 kg SO₂e

Material

Material	
	5.1E-3
	5.1E-3
Manufacturing	
	1.4
	1.4
Use	7-
	450
	6400
End Of Life	/// // // // // // // // // // // // //
	6.4E-5
	6.4E-5
Transportation	
	2.7E-4
	2.7E-4

Water Eutrophication - Comparison

Total : 16 kg PO₄e : 240 kg PO₄e

Material

Manufacturing	
	2.3E-4
	2.3E-4

0.053 0.053

Use

1	16
	240

End Of Life

1.6E-4
1.6E-4

Transportation

50	
	6.0E-5
	6.0E-5

Material Financial Impact Comparison

0.50 USD 0.50 USD

Comments	
	2
Click here for alternative units such as 'Miles Driven in a Car'	SOLIDWORKS

Sustainability Report	

Glossary

Air Acidification - Sulfur dioxide, nitrous oxides other acidic emissions to air cause an increase in the acidity of rainwater, which in turn acidifies lakes and soil. These acids can make the land and water toxic for plants and aquatic life. Acid rain can also slowly dissolve manmade building materials such as concrete. This impact is typically measured in units of either kg sulfur dioxide equivalent (SO₂), or moles H+ equivalent.

Carbon Footprint - Carbon-dioxide and other gasses which result from the burning of fossil fuels accumulate in the atmosphere which in turn increases the earth's average temperature. Carbon footprint acts as a proxy for the larger impact factor referred to as Global Warming Potential (GWP). Global warming is blamed for problems like loss of glaciers, extinction of species, and more extreme weather, among others.

Total Energy Consumed - A measure of the non-renewable energy sources associated with the part's lifecycle in units of megajoules (MJ). This impact includes not only the electricity or fuels used during the product's lifecycle, but also the upstream energy required to obtain and process these fuels, and the embodied energy of materials which would be released if burned. PED is expressed as the net calorific value of energy demand from non-renewable resources (e.g. petroleum, natural gas, etc.). Efficiencies in energy conversion (e.g. power, heat, steam, etc.) are taken into account.

Water Eutrophication - When an over abundance of nutrients are added to a water ecosystem, eutrophication occurs. Nitrogen and phosphorous from waste water and agricultural fertilizers causes an overabundance of algae to bloom, which then depletes the water of oxygen and results in the death of both plant and animal life. This impact is typically measured in either kg phosphate equivalent (PO₄) or kg nitrogen (N) equivalent.

Life Cycle Assessment (LCA) - This is a method to quantitatively assess the environmental impact of a product throughout its entire lifecycle, from the procurement of the raw materials, through the production, distribution, use, disposal and recycling of that product.

Material Financial Impact - This is the financial impact associated with the material only. The mass of the model is multiplied by the financial impact unit (units of currency/units of mass) to calculate the financial impact (in units of currency).

Learn more about Life Cycle Assessment 🧼

