WeBWorK Functions

Mathematical Symbols Available In WeBWorK

- + Addition
- - Subtraction
- Multiplication can also be indicated by a space or jutaposition, e.g. $2 \mathrm{x}, 2 \mathrm{x}$ or $2^{*} \mathrm{x}$, also 2(3+4).
- / Division
- \wedge or ${ }^{* *}$ You can use either ${ }^{\wedge}$ or ${ }^{* *}$ for exponentiation, e.g. $3^{\wedge} 2$ or $3^{* *} 2$
- Note, roots can be taken using exponents, so to get the fifth root of 17 , use $17 \wedge(1 / 5)$.
- (and) You can also use square brackets, [], and braces, \{ \}, for grouping, e.g. $[1+2] /[3(4+5)]$

Mathematical Constants Available In WeBWorK

- pi gives 3.14159265358979 , e.g. $\cos (\mathrm{pi})$ is -1
- e gives 2.71828182845905 , e.g. $\ln \left(\mathrm{e}^{*} 2\right)$ is $1+\ln (2)$

Mathematical Functions Available In WeBWorK

- abs() The absolute value
- sqrt() Square root
- $\exp ()$ The same function as $\mathrm{e}^{\wedge} \mathrm{x}$
- $\log ()$ The logarithm with base 10
- logten() Another name for the logarithm with base 10
- $\ln ($) The natural logarithm (base e)
- $\sin ()$ Note: $\sin ()$ uses radian measure
- $\cos ()$ Note: $\cos ()$ uses radian measure
- $\tan ()$ Note: $\tan ()$ uses radian measure
- $\sec ()$ Note: $\sec ()$ uses radian measure
- $\arcsin ()$
- asin() Another name for arcsin
- $\arccos ()$
- $\operatorname{acos}($) Another name for arccos
- $\arctan ()$
- atan() Another name for arctan
- $\sinh ()$ Hyperbolic sine
- $\cosh ()$ Hyperbolic cosine
- tanh() Hyperbolic tangent
- $\operatorname{sech}()$ Hyperbolic secant
- $\operatorname{sgn}($) The sign function, either $-1,0$, or 1
- step() The step function (0 if $x<0,1$ if $x>=0$)
- fact() The factorial function (defined only for non negative integers)

Syntax for entering expressions

- Be careful entering expressions just as you would be careful entering expressions in a calculator.
- Sometimes using the * symbol to indicate multiplication makes things easier to read. For example $(1+2) *(3+4)$ and $(1+2)(3+4)$ are both valid. So are $3 * 4$ and $34(3$ space 4 , not 34) but using a $*$ makes things clearer.
- Use ('s and)'s to make your meaning clear. You can also use ['s and]'s and \{'s and \}'s.
- Don't enter $2 / 4+5$ (which is 5.5) when you really want $2 /(4+5$) (which is $2 / 9$).
- Don't enter $2 / 3 * 4$ (which is $8 / 3$) when you really want $2 /(3 * 4)$ (which is $2 / 12$).
- Entering big quotients with square brackets, e.g. $[1+2+3+4] /[5+6+7+8]$, is a good practice.
- Be careful when entering functions. It's always good practice to use parentheses when entering functions. Write $\sin (t)$ instead of sint or $\sin t$. But WeBWorK is smart enought to accept $\sin t$ or even sint. But $\sin 2 t$ is really $\sin (2) t$, i.e. $(\sin (2))^{*} t$. Be careful.
- Understand that $\sin ^{\wedge} 2 t$ is really short hand for $(\sin (t))^{\wedge} 2$ and must be entered this way. Actually you could enter it as $\sin (t)^{\wedge} 2$ or even $\sin t^{\wedge} 2$, but don't try such things unless you really understand the precedence of operations.
- For example $2+3 \sin ^{\wedge} 2(4 x)$ is wrong. You need to enter something like: $2+3(\sin (4 x))^{\wedge} 2$ or $2+3 \sin (4 x)^{\wedge} 2$. Why does the last expression work? Because things in parentheses are always done first [i.e. (4x)], next all functions, such as sin, are evaluated [giving $\sin (4 x)$], next all exponents are taken [giving $\sin (4 x)^{\wedge} 2$], next all multiplications and divisions are performed [giving $3 \sin (4 x)^{\wedge} 2$], and finally all additions and subtractions are performed [giving $2+3 \sin (4 x)^{\wedge} 2$].
- The complete rules for the precedence of operations, in addition to the above, are
- Multiplications and divisions are performed left to right: $2 / 3 * 4=(2 / 3) * 4=8 / 3$.
- Additions and subtractions are performed left to right: $1-2+3=(1-2)+3=2$.
- Exponents are taken right to left: $2^{\wedge} 3^{\wedge} 4=2^{\wedge}\left(3^{\wedge} 4\right)=2^{\wedge} 81=$ a big number.
- Use the "Preview Button" to see exactly how your entry looks. E.g. to tell the difference between $1+2 / 3+4$ and $[1+2] /[3+4]$ click the "Preview Button".

Scientific Notation Available In WeBWorK

- 2.1E2 gives 210
- 2.1E-2 gives .021

Last update: Tuesday, Aug 23, 2005.

