PROBLEMS IN GROUP THEORY

1) Consider the dihedral group D_{8} of order 8 . Write down two nontrivial cyclic subgroups of it. Is the whole group cyclic? Justify your answer.
2) Write down a subgroup of order 4 in D_{8} such that every nontrivial element in this subgroup has order 2 .
3) What are all the subgroups of the alternating group A_{4} ?
4) Prove that any normal subgroup H of a group G is a union of its conjugacy classes.
5) Prove that any subgroupp H of index 2 in a group G is normal.
6) Prove that the dihedral group D_{12} of order 12 is isomorphic to $S_{3} \times \mathbb{Z} / 2$.
7) Prove that if p is a prime and $\phi(n)$ denotes the Euler ϕ-function then $\phi\left(p^{n}=p^{n}-p^{n-1}\right.$. Use this to count the number of elements of order 5 in $\mathbb{Z} / 5$.
8) Let $G=S_{3} \oplus \mathbb{Z} / 5$. What are all the possible orders of elements in G. Prove that G cannot have an element of order 30 and is hence not cyclic.

And: Possible orders are $1,2,3,5,10,15,30$ as the order of any element has to divide the order of the group which is 30 . If G were cyclic, then G would be abelian, and so would all its subgroups but S_{3} is not abelian.
8) For any positive integer n let $U(n)$ denote the subgroup of \mathbb{Z} / n consisting of elements $a \in \mathbb{Z} / n$ such that there is an element b in \mathbb{Z} / n with the ${ }^{*}$ mutliplication $\bmod n *$ operation. Show that $U(n)$ has $\phi(n)$ elements. For example, if $n=5$, then $2.3=1$. Show that $U\left(p^{n}\right)$ for a prime p has $p^{n}-p^{n-1}$ elements.
9) Prove that if G is cyclic and H is a normal subgroup, then the quotient group G / H is cyclic.
10) Prove that if G^{\prime} is the commutator subgroup of a group G, then G / G^{\prime} is abelian.
11) Let $Z(G)$ denote the centre of a group G. Suppose that $G / Z(G)$ is abelian. For each $g \in G$, define a map $\psi_{g}: G \rightarrow G$ by $\psi_{g}:: x \mapsto[x, g]$ where $[x, g]$ denotes the commutator. Prove that each ψ_{g} is a homomorphism. Is it an automorphism? Justify your answer.
12) In the problem above, suppose that $x^{m}=1$ for every $m \in Z(G)$. Prove that $y^{m} \in Z(G)$ for every $y \in G$.
13) Suppose that G is a group and that N is a normal subgroup of G. For each $g \in G$, let $C_{G}(g)$ denote the centralizer in G of g. Also let $C_{N}(g)=N \cap C_{G}(g)$. Prove that $C_{N}(g) \subset C_{G}(g)$ and that $C_{G}(g) / C_{N}(g)$ is isomorphic to a subgroup of G / N. Clearly state any isomorphism theorem to which you appeal in the course of your argument.
14) Suppose that G is a group and that its automorphism group $\operatorname{Aut}(G)$ is finite. Prove that the index $|G: Z(G)|$ must be finite.
15) Show that every group of order 35 must be abelian.

