Group Meetin	Ig	Week 5	
Location	<u> </u>	Frank Forward Computer Lab	
Date and Time	e of Meeting	September 30th, 2019, 12:00 – 1:00 PM	
Minutes Prepa	ared by	Martin Battilana	
Leader		Hin Yao Chow	
Secretary		Martin Battilana	
1.0 Attendees			
Martin Battila	na		
Jacob Koo			
Hin Yao Chow			
Oliver Tian			
Devang Lamba			
2.0 Meeting Agenda			
1) Discus	ss the use of 3D sensors		
2) Discus	Discuss software to convert camera data and get quantitative values in order to detect		
defec	defects		
3) Discus	ss how to turn an image into compute	r data to detect defects (ImageJ and Open CV)	
4) Discus	ss speckle data for enhanced resolutio	n	
5) Discus	ss an x-y plane laser scanner and refra	ction laser sensors in terms of quantitative results	
6) Go ov	er action items and questions from W	eek 4 Formal Meeting Minutes	
7) Discus	ss next steps in order to continue proj	ect progression	
8) Distril	oute tasks for work to be done this we	eek	
9) Discus	ss status update for Formal Meeting		
3.0 Notes from	n Meeting		
1) Image	eJ may not be the correct solution to u	ise, lots of problems with it	
2) MATL	AB might be able to do real time imag	ing without addons	
3) 3D sca	anning uses lasers to scan a part and p	produces an STL file.	
4) Qlone	e is a 3D scanning application for your	phone	
5) For a	live monitoring system, 3D scanning is	slow	
6) Ciclop	3D scanners use 2 cameras to get 2 in	mages	
7) When	using MATLAB to convert an image to	o binary, it can be very challenging to determine	
where	e the boundaries of the printed part is	versus where free space is	
8) Need	to first isolate the image, then get RB	G profile	
9) MATL	AB has a 2D image pixel coordinate sy	stem which stores the values in a matrix	
10) RGB p backg	profile could be overlaid onto the imag round	ge and the 3D model could be segregated from the	
11) To rec	duce error, there could be a routine to	o check between 2 different images	
12) For sp	peckle pattern, sensors project an illun	ninous laser light as well as a reference laser light	
to acc	uire a face map of the amplitudes on	the surface. It can then be processes through	
softwa detec	are such as MATLAB to get a 3D displated.	acement matrix. Stress and strain could also be	
13) Poten	tially use CCD resolution cameras (risl	k that cost may be too high)	
14) The p	lan is to move along with image photo	comparison using MATLAB to develop a routine	
15) Defec	ts that we will focus on include: "snag	hetti monster", warping, and laver shifting	
16) Senso	r should be able to measure live feed	back in the x-y plane at a specified z	
17) For th	e formal meeting, start by discussing	process that wont work and then discuss parts	
that w	vorked well		

 19) The goal is to create a set up to take 3D images from side views 20) The limit of MATLAB is 524288 elements 4.0 Action Items for Next Week 1) Look more into MATLAB code 2) Look into slicer settings 3) Figure out a routine that can detect defects within 3 to 4 minutes 4) Create a short list of cameras as potential solutions for sensors 5) Look into real time image uploading 6) Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems 7) Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions 1) How do we compare the x-y distance at each layer for 3D sensors?
 20) The limit of MATLAB is 524288 elements 4.0 Action Items for Next Week Look more into MATLAB code Look into slicer settings Figure out a routine that can detect defects within 3 to 4 minutes Create a short list of cameras as potential solutions for sensors Look into real time image uploading Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions How do we compare the x-y distance at each layer for 3D sensors?
 4.0 Action Items for Next Week Look more into MATLAB code Look into slicer settings Figure out a routine that can detect defects within 3 to 4 minutes Create a short list of cameras as potential solutions for sensors Look into real time image uploading Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix How do we compare the x-y distance at each layer for 3D sensors?
 Look more into MATLAB code Look into slicer settings Figure out a routine that can detect defects within 3 to 4 minutes Create a short list of cameras as potential solutions for sensors Look into real time image uploading Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix How do we compare the x-y distance at each layer for 3D sensors?
 Look into slicer settings Figure out a routine that can detect defects within 3 to 4 minutes Create a short list of cameras as potential solutions for sensors Look into real time image uploading Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix How do we compare the x-y distance at each layer for 3D sensors?
 3) Figure out a routine that can detect defects within 3 to 4 minutes 4) Create a short list of cameras as potential solutions for sensors 5) Look into real time image uploading 6) Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems 7) Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions 1) How do we compare the x-y distance at each layer for 3D sensors?
 4) Create a short list of cameras as potential solutions for sensors 5) Look into real time image uploading 6) Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems 7) Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions 1) How do we compare the x-y distance at each layer for 3D sensors?
 5) Look into real time image uploading 6) Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems 7) Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions 1) How do we compare the x-y distance at each layer for 3D sensors?
 6) Hin Yao Chow and Devang Lamba will look into image detection (live image uploading system), types of cameras/camera systems and will look at exploring cctv systems 7) Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions 1) How do we compare the x-y distance at each layer for 3D sensors?
 system), types of cameras/camera systems and will look at exploring cctv systems 7) Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions 1) How do we compare the x-y distance at each layer for 3D sensors?
 7) Martin Battilana will look into how to get measurement data from an optical sensor and what this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions How do we compare the x-y distance at each layer for 3D sensors?
 this data looks like (matrix of RGB and x, y positions) 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions How do we compare the x-y distance at each layer for 3D sensors?
 8) Jacob Koo will be looking at how to isolate the print from the background in an image as well as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions How do we compare the x-y distance at each layer for 3D sensors?
 as how to obtain reference points. 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions How do we compare the x-y distance at each layer for 3D sensors?
 9) Kevin and Oliver will work on how to create an error routine assuming the sensor data is imported as a matrix 5.0 Questions How do we compare the x-y distance at each layer for 3D sensors?
imported as a matrix 5.0 Questions 1) How do we compare the x-y distance at each layer for 3D sensors?
5.0 Questions1) How do we compare the x-y distance at each layer for 3D sensors?
 How do we compare the x-y distance at each layer for 3D sensors?
2) How do we create an image capturing and uploading routine?
3) How do we obtain a matrix of useful information from the sensor and what will this matrix
include?
4) Car reverse camera has lines overlaid on it, could this be applicable to our solution?
5) From our uploaded image, how can we measure distance for each height and convert it into a
matrix?