

Lecture outline

- Properties of soil particles
- Phyllosilicate clay minerals
- Inter-particle forces

Sand (0.05 - 2 mm) - small specific surface area (e.g. 0.1 m²/g), inert

2

Clay (<0.002 mm) - large specific surface area (e.g. 10-1,000 m²/g), reactive, behave as colloids

Specific surface area = area / mass [m²/g]

Soil colloids

- Phyllosilicate clay minerals
- Oxides and hydrous oxides of Fe and Al (gibbsite, hematite, goethite)
- Amorphous minerals (allophane, imogolite)
- Organic colloids

Influence of <u>mineral</u> soil particles on soil properties

Property	Sand	Silt	Clay
Water-holding capacity	Low	Medium to high	High
Aeration	Good	Medium	Poor
Ability to store plant nutrients	Poor	Medium to high	High

Primary minerals in sand and silt size fraction

- Quartz (SiO₂)
- Feldspars (MAISi₃O₈, M=K, Ca, Na)
- Mica (muscovite and biotite)
- Pyroxene (MSiO₃, M=Mg, Mn)
- Amphiboles Ca₂Mg₅Si₈O₂₂(OH)₂
- Olivine (Mg, Fe)₂SiO₄

Secondary minerals in clay size fraction

- Silicate clay minerals (e.g. phyllosilicates)
- Carbonates (calcite CaCO₃)
- Sulfates (gypsum CaSO₄ · 2H₂O)
- Oxides/hydrous oxides of Fe and AI (sesquioxides $R_2O_3{\cdot}nH_2O;\,R{=}Fe,\,AI)$
 - gibbsite $AI(OH)_3$, goethite FeOOH, hematite Fe_2O_3

8

- Amorphous clay minerals (aluminosilicates)
 - alophane and imogolite

Formation of soil aggregates

Aggregation = Flocculation + Cementation

Flocculation is a state when primary particles (i.e. clay particles) remain close together due to interactive forces (electrostatic, van der Waals, and/or hydrogen bonding) and form microscopic clumps or floccules

Cementation represents stabilization of floccules by action of a cementing agent (organic compounds, Fe/Al oxides, clay, carbonates)

