PERMUTATION GROUPS

Let $G=S_{n}$, the symmetric group consisting of one to one bijective maps on the set $\{1,2, \cdots, n\}$. Recall that any element σ in S_{n} can be expressed as a product of disjoint cycles, and the element has type $\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ if the integers a_{i} are the lengths of the cycles τ_{i} where

$$
\sigma=\tau_{1} \cdot \tau_{2} \cdot \cdots \tau_{k}
$$

is the product expression of σ as disjoint cycles. We show that this product expression is uniques. Note that the factors commute i.e. $\tau_{i} \tau_{j}=\tau_{j} \tau_{i}$ as the cycles are disjoint. Suppose there are two expressions for σ,

$$
\sigma=\tau_{1} \cdot \tau_{2} \cdot \cdots \tau_{k} \text { and } \pi_{1} \cdot \pi_{2} \ldots \pi_{j}
$$

Write $\tau_{1}=\left(i_{1}, \cdots, i_{k}\right)$ where $k=a_{i}$ and $\pi_{1}=\left(i_{1}^{\prime}, \cdots, . . i_{k}^{\prime}\right)$. (We can assume that an element τ_{1} and π_{1} have the same length by moving the elements π_{i} and also assume that $i_{1}=i_{1}^{\prime}$. Then $i_{2}=p i\left(i_{1}\right)=i_{2}^{\prime}=\pi_{1}\left(i_{1}^{\prime}\right)$, similarly $i_{3}=i_{3}^{\prime}$, etc. We can deal with the other cycles in a similar manner and hence the two expressions for σ are identical.

A two cycle i.e. a cycle of the form (a, b) is called a transposition. Every cycle in S_{n} can be written as a product of transpositions. This is because any cycle

$$
\left(i_{1} i_{2} \cdots i_{r-1} i_{r}\right)=\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1} \cdots\left(i_{1} i_{3}\right)\left(i_{1} i_{2}\right)\right.
$$

This expression of any cycle as a product of transpositions is not unique. However the parity of the number of transpositions that occur (i.e. whether even number or odd number) is always well-defined and this is called the sign of a permutation. A permutation is even if it is a product of an even number of transpositions and odd if it is a product of an odd number of transpositions. The sign can be determined by the number of intersections in the crossover diagram.

Important points to remember about S_{n} :

i) $\left|S_{n}\right|=n!$.
ii) Two cycles in S_{n} are conjugate if and only if they have the same type.
iii) Every element in S_{n} can be written uniquely as a product of disjoint cycles.
iv) Every element can be written as a product of transpositions.
v) The sign of a permutation σ is the parity of the number of transpositions that occurs in an expression of σ as a product of transpositions.
vi) Two elements of S_{n} are conjugate if and only if they have the same cycle type.
vii) The number of conjugacy classes of S_{n} coincides with the number of partitions of n.

Examples:

(1653) is odd in S_{6} as $(1653)=(16)(15)(!3)$. The cycle $(13567)=(13)(15)(16)(17)$ is even.

Let n be a positive integer. If n is odd, is an n-cycle an odd or even permutation? Same question for n even.
Writing the n-cycle as a product of two cycles, it can be expressed as product of ($n-1$) two cycles; if n is odd, then $n-1$ is even, so odd cycles have even length.
In S_{n}, let α be an r-cycle, β be an s-cycle and γ be a t-cycle. Then check that $\alpha \beta$ is even if and only if $(r+s)$ is even, $\alpha \beta \gamma$ is even if and only if $r+s+t$ is even.
Show that D_{24} and S_{4} are not isomorphic. What are the cardinalities of the two groups?
Ans: The two groups D_{24} and S_{4} both have 24 elements. The group D_{24} has an element t of order 12 , namely the element corresponding to the rotation r_{n}. If there is an isomorphism, then this should give us an element of order 12 in S_{4}. However, S_{4} has no such elements as the order of any element in S_{n} is the least common multiple of the integers occurring in its type. However the elements of largest order in S_{4} are the 4 -cycles, which have order 4.

