< Summary of Number Theory >

Discussed in class:
Definition An integer a divides an integer b (denoted $a \mid b$) if there is some integer k such that $b=a k$.

Theorem $\quad \prod_{i=0}^{k}(n+i)$ is divisible by k for all positive integers k.
Theorem (The Division Algorithm)
For positive integers a and b, there exist unique integers q and r such that $a=b q+r$ with $0 \leq r<b$.
Definition $\quad[a]_{b}=r_{b}^{a}$ denotes the remainder of a when divided by b.
Theorem (Modular Arithmetic)
Let a, b and c be integers with $c \neq 0$, then

1. $[a+b]_{c}=\left[r_{c}^{a}+r_{c}^{b}\right]_{c}$
2. $[a-b]_{c}=\left[r_{c}^{a}-r_{c}^{b}\right]_{c}$
3. $[a \cdot b]_{c}=\left[r_{c}^{a} \cdot r_{c}^{b}\right]_{c}$

Theorem Given two integers b and n, where n is a $k+1$-place digit that can be expressed as $n=n_{0} 10^{0}+\cdots+n_{k} 10^{k}, n$ is divisible by b iff

$$
\left[n_{0}\right]_{b} c^{0}+\cdots+\left[n_{k}\right]_{b} c^{k}
$$

where $c=[10]_{b}$.
Definition A rational number is a number r that can be expressed in the form of $r=\frac{p}{q}$ where p and q are integers such that $q \neq 0$.
Theorem If two integers a and b are rational, then the following are also rational:

1. $a \pm b$
2. $a \cdot b$
3. a / b

Theorem If $d \mid a$ and $d \mid b$, then $a \mid(a x \pm b y)$ for all integers x and y.
Definition Two integers a and b are said to share a common factor c if $c \mid a$ and $c \mid b$.
Definition
The greatest common divisor of a and b (denoted as $\operatorname{gcd}(a, b)$) is the common
factor such that $d \leq \operatorname{gcd}(a, b)$ for all other common factors d.
Definition Two integers a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
Definition An integer p is a prime if its only divisors are 1 and p.
Theorem (Fundamental Theorem of Arithmetic)
Every positive integer n can be decomposed as a product of primes

$$
n=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \ldots p_{k}{ }^{a_{k}}
$$

where p_{i} is the i-th largest prime such that $p_{i} \neq p_{j}$ whenever $i \neq j$ and a_{i} is some integer exponent corresponding to the i-th prime.
Also, the decomposition is unique: Let s and t be two positive integers where $s=p_{1}{ }^{s_{1}} p_{2}{ }^{s_{2}} \ldots p_{k}{ }^{s_{k}}$ and $t=p_{1}{ }^{t_{1}} p_{2}{ }^{t_{2}} \ldots p_{k}{ }^{t_{k}}$. Then, whenever $s=t$, we have $s_{i}=t_{i}$ for all $1 \leq i \leq k$.

Theorem $\quad \sqrt{n}$ is rational if and only if \sqrt{n} is an integer.
Theorem If p is a prime, then \sqrt{p} is not an integer.
Corollary If p is a prime, then \sqrt{p} is irrational.
(This result can be generalized to $\sqrt[n]{p}$ where $n \geq 2$.)

Discussed in the textbook:
Theorems 4.1, Let a, b, c and d be integers with $a \neq 0$ and $b \neq 0$.
4.2 and 4.3 1 . If $a \mid b$ and $b \mid c$, then $a \mid c$.
2. If $a \mid b$ and $c \mid d$, then $a c \mid b d$.
3. For all $x, y \in \mathbb{Z}$, if $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$.

Lemma 11.1 An integer $n \geq 2$ is composite if and only if there exist integers a and b such that $n=a b$ where $1<a<n$ and $1<b<n$.
Theorem 11.3 Let a and b be nonzero integers.
i) If $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
ii) If $a \mid b$, then $|a| \leq|b|$.

Definition For integers a and b, an integer of the form $a x+b y$, where $x, y \in \mathbb{Z}$, is called a linear combination of a and b.
Theorem 11.7 Let a and b be integers that are not both 0 . Then $\operatorname{gcd}(a, b)$ is the smallest positive linear combination of a and b.
Theorem 11.8 Let a and b be two integers not both 0 . Then $d=\operatorname{gcd}(a, b)$ if and only if d is the positive integer which satisfies the following two conditions:

1. d is a common divisor of a and b;
2. if c is any common divisor of a and b, then $c \mid d$.

Lemma 11.9 (The Euclidean Algorithm)

Let a and b be positive integers. If $b=a q+r$ for some integers q and r, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a) .{ }^{1}$
Theorem 11.12 Let a and b be integers that are not both 0 . Then $\operatorname{gcd}(a, b)=1$ iff there exist integers s and t such that $a s+b t=1$. ${ }^{\text {II }}$
Theorem 11.13 (Euclid's Lemma)
Let a, b and c be integers, where $a \neq 0$. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
Corollary Let b and c be integers and let p be a prime. If $p \mid b c$, then $p \mid b$ or $p \mid c$. II 11.14

[^0]Theorem 11.16 Let $a, b, c \in \mathbb{Z}$, where a and b are relatively prime nonzero integers. If $a \mid c$ and $b \mid c$, then $a b \mid c$.
Lemma 11.19 If n is a composite number, then n has a prime factor p such that $p \leq \sqrt{n}$

From assignments:
11.28 Let a and b be integers not both 0 . There are infinitely many pairs s, t of integers such that $\operatorname{gcd}(a, b)=a s+b t$.
11.37 If $p \geq 2$ is an integer with the property that for every pair a, b of integers $p \mid a b$ implies that $p \mid a$ or $p \mid b$, then p is prime. ${ }^{\text {IV }}$
11.38 a) Every consecutive odd positive integers are relatively prime.

Other Topics:

- Irrationality of $\sqrt{2}, \sqrt{3}, \sqrt{8}$ and other numbers.
- Infinitude of primes
- Sieve of Eratosthenes

[^1]
[^0]: ${ }^{\mathrm{I}}$ In essence, to find the greatest common divisor, first divide b by a (assuming that $a<b$), obtain the first remainder, then use the first remainder to divide a. Repeat the process until $r=0$, in which case $\operatorname{gcd}\left(r^{*}, 0\right)=r^{*}$ for some integer r^{*}. The remainder is guaranteed to converge to zero since $0 \leq r_{i+1}<r_{i}$ and r_{i} can only decrease as more divisions are performed.
 ${ }^{\text {II }}$ This is very much a corollary of the linearity of gcd (a, b).
 ${ }^{\text {III }}$ This result can be extended to products of multiple integers.

[^1]: ${ }^{\text {IV }}$ This is the converse of Theorem 11.14.

