	< Summary of Number Theory >	
Discussed in class:		
Definition	An integer a divides an integer b (denoted $a b$) if there is some integer k such that $b = ak$.	
<u>Theorem</u>	$\prod_{i=0}^{k} (n+i)$ is divisible by k for all positive integers k.	
Theorem	(The Division Algorithm)	
	For positive integers a and b, there exist unique integers q and r such that $a = bq + r$ with $0 \le r < b$.	
Definition	$[a]_b = r_b^a$ denotes the remainder of a when divided by b.	
<u>Theorem</u>	(Modular Arithmetic)	
	Let a, b and c be integers with $c \neq 0$, then	
	1. $[a + b]_c = [r_c^a + r_c^b]_c$	
	2. $[a-b]_c = [r_c^a - r_c^b]_c$	
	3. $[a \cdot b]_c = [r_c^a \cdot r_c^b]_c$	
<u>Theorem</u>	Given two integers b and n, where n is a $k + 1$ -place digit that can be expressed as $n = n_0 10^0 + \dots + n_k 10^k$, n is divisible by b iff	
	$[n_0]_b c^0 + \dots + [n_k]_b c^k$	
	where $c = [10]_{b}$.	
Definition	A rational number is a number r that can be expressed in the form of $r = \frac{p}{q}$ where	
	p and q are integers such that $q \neq 0$.	
<u>Theorem</u>	If two integers a and b are rational, then the following are also rational:	
	1. $a \pm b$	
	2. $a \cdot b$	
	3. a/b	
<u>Theorem</u>	If $d a$ and $d b$, then $a (ax \pm by)$ for all integers x and y.	
Definition	Two integers a and b are said to share a common factor c if $c a$ and $c b$.	
Definition	The greatest common divisor of <i>a</i> and <i>b</i> (denoted as gcd (a, b)) is the common factor such that $d \leq \text{gcd}(a, b)$ for all other common factors <i>d</i> .	
Definition	Two integers a and b are relatively prime if $gcd(a, b) = 1$.	
Definition	An integer p is a prime if its only divisors are 1 and p .	
<u>Theorem</u>	(Fundamental Theorem of Arithmetic)	
	Every positive integer n can be decomposed as a product of primes	
	$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$	
	where p_i is the <i>i</i> -th largest prime such that $p_i \neq p_j$ whenever $i \neq j$ and a_i is some	
	integer exponent corresponding to the <i>i</i> -th prime.	
	Also, the decomposition is unique: Let <i>s</i> and <i>t</i> be two positive integers where $s = p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}$ and $t = p_1^{t_1} p_2^{t_2} \dots p_k^{t_k}$. Then, whenever $s = t$, we have $s_i = t_i$ for all $1 \le i \le k$.	

Theorem	\sqrt{n} is rational if and only if \sqrt{n} is an integer.
<u>Theorem</u>	If p is a prime, then \sqrt{p} is not an integer.
<u>Corollary</u>	If p is a prime, then \sqrt{p} is irrational.
	(This result can be generalized to $\sqrt[n]{p}$ where $n \ge 2$.)

Discussed in the textbook:

<u>Theorems 4.1,</u> <u>4.2 and 4.3</u>	 Let <i>a</i>, <i>b</i>, <i>c</i> and <i>d</i> be integers with <i>a</i> ≠ 0 and <i>b</i> ≠ 0. 1. If <i>a</i> <i>b</i> and <i>b</i> <i>c</i>, then <i>a</i> <i>c</i>. 2. If <i>a</i> <i>b</i> and <i>c</i> <i>d</i>, then <i>ac</i> <i>bd</i>. 3. For all <i>x</i>, <i>y</i> ∈ Z, if <i>a</i> <i>b</i> and <i>a</i> <i>c</i>, then <i>a</i> (<i>bx</i> + <i>cy</i>).
<u>Lemma 11.1</u>	An integer $n \ge 2$ is composite if and only if there exist integers a and b such that $n = ab$ where $1 < a < n$ and $1 < b < n$.
<u>Theorem 11.3</u>	Let <i>a</i> and <i>b</i> be nonzero integers. i) If $a b$ and $b a$, then $a = b$ or $a = -b$. ii) If $a b$, then $ a \le b $.
Definition	For integers <i>a</i> and <i>b</i> , an integer of the form $ax + by$, where $x, y \in \mathbb{Z}$, is called a linear combination of <i>a</i> and <i>b</i> .
<u>Theorem 11.7</u>	Let a and b be integers that are not both 0. Then gcd (a, b) is the smallest positive linear combination of a and b .
<u>Theorem 11.8</u>	 Let a and b be two integers not both 0. Then d = gcd (a, b) if and only if d is the positive integer which satisfies the following two conditions: 1. d is a common divisor of a and b; 2. if c is any common divisor of a and b, then c d.
<u>Lemma 11.9</u>	(The Euclidean Algorithm) Let <i>a</i> and <i>b</i> be positive integers. If $b = aq + r$ for some integers <i>q</i> and <i>r</i> , then $gcd(a, b) = gcd(r, a)$. ¹
<u>Theorem 11.12</u>	Let <i>a</i> and <i>b</i> be integers that are not both 0. Then $gcd(a, b) = 1$ iff there exist integers <i>s</i> and <i>t</i> such that $as + bt = 1$. ^{II}
<u>Theorem 11.13</u>	(Euclid's Lemma) Let a, b and c be integers, where $a \neq 0$. If $a bc$ and $gcd(a,b) = 1$, then $a c$.
<u>Corollary</u> <u>11.14</u>	Let b and c be integers and let p be a prime. If $p bc$, then $p b$ or $p c$. ^{III}

^I In essence, to find the greatest common divisor, first divide *b* by *a* (assuming that a < b), obtain the first remainder, then use the first remainder to divide *a*. Repeat the process until r = 0, in which case $gcd(r^*, 0) = r^*$ for some integer r^* . The remainder is guaranteed to converge to zero since $0 \le r_{i+1} < r_i$ and r_i can only decrease as more divisions are performed. ^{II} This is very much a corollary of the linearity of gcd (a, b). ^{III} This result can be extended to products of multiple integers.

Theorem 11.16	Let $a, b, c \in \mathbb{Z}$, where a and b are relatively prime nonzero integers. If $a c$
	and $b c$, then $ab c$.
<u>Lemma 11.19</u>	If n is a composite number, then n has a prime factor p such that $p \le \sqrt{n}$

From assignment	nts:
<u>11.28</u>	Let a and b be integers not both 0. There are infinitely many pairs s, t o f integers such that $gcd(a, b) = as + bt$.
<u>11.37</u>	If $p \ge 2$ is an integer with the property that for every pair <i>a</i> , <i>b</i> of integers $p ab$ implies that $p a$ or $p b$, then <i>p</i> is prime. ^{IV}
<u>11.38 a)</u>	Every consecutive odd positive integers are relatively prime.

Other Topics:

- Irrationality of √2, √3, √8 and other numbers.
 Infinitude of primes
- Sieve of Eratosthenes •

^{IV} This is the converse of Theorem 11.14.