
Multiprocessor platforms for real-time systems

Why?
Models of multiprocessor systems
Scheduling policies for multiprocessor systems
Schedulability tests
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Multiprocessors (SMT)

Sony/IBM/Toshiba cell processor
• One dual threaded, dual issue in-order 

PowerPC core @3.2 GH
• 8 Processing Elements, each with 256k local 

store, a vector Single Precision FPU and a 
conventional Double Precision FPU @3.2 GHz

• Bi-directional ring interconnect between all 9 
PEs

• Rambus XDR memory controller

Sun UltraSparc T1 - Niagara
• Fine-grained chip multithreading
• Eight cores on one die (90nm technology)
• Each core has one pipeline that can support 

four threads in parallel with zero context switch 
overhead
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Multiprocessors in avionics systems
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Multiprocessors in avionics systems
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Multiprocessors in avionics systems

Application is designed as a set of 
interacting software objects (hundreds)
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Multiprocessing platforms for large systems
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The advantages of multiprocessor systems

• Greater computational power (obviously!)

• Power savings

• More slower processors when compared to a few fast (power-hungry) 
processors

• Easier heat dissipation

• Reliability

• Backups for critical tasks

• Migrations when some processors fail

• Security and isolation

• Critical tasks can be separated from non-critical tasks
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Models of multiprocessor systems

• Identical multiprocessors

• Each processor has the same computing capacity

• Uniform multiprocessors

• Different processors have different computing capacities

• The faster a processor is, the lower the execution time of a task

• Heterogeneous multiprocessors

• Each (task, processor) pair may have a different computational attribute

• Execution times of a task may vary from processor to processor but there is no 
well-defined relationship
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Multiprocessor models
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Identical multiprocessors
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Identical multiprocessors
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Identical multiprocessors
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Identical multiprocessors

P1 P2 P3

Task T1 Task T2

8



Uniform multiprocessors
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Uniform multiprocessors
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Uniform multiprocessors
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Uniform multiprocessors
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Heterogeneous multiprocessors
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Heterogeneous multiprocessors
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Heterogeneous multiprocessors
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Heterogeneous multiprocessors
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Resource management for real-time systems

• Given a multiprocessing platform and a set of recurring tasks with deadlines, 
can the tasks be scheduled to meet their deadlines on the platform?

• Standard recurring task model

• Tasks {Ti}

• Periodic tasks with periods {Pi}

• Execution times of the tasks {ei}

• Known deadlines
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Classes of scheduling policies

• Apart from the known classes (static and dynamic priorities), multiprocessing 
introduces further options

• Partitioned scheduling

• Each task may execute only on one processor

• No migration of jobs

• Global scheduling

• Any instance of any task may execute on any processor

• Jobs can migrate between processors
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Partitioned scheduling vs. global scheduling

• Partitioned scheduling is easier to implement and reason about

• Once tasks are assigned to a processor, we can apply known schedulability 
tests

• Without migration it is easier to maintain context information

• When processors are on different chips migration requires context transfer, 
cache problems, etc.

• Global scheduling, however, is more flexible

• Allowing migration improves schedulability

• On-chip multiprocessing minimizes some of the overhead of job migration
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Partitioned scheduling

• We can use either fixed priority (rate monotonic) or dynamic priority (EDF) 
policies

• Need to assign tasks to processors such that the utilization bound (or other 
schedulability condition) is satisfied

• For simplicity we will assume that any task can be allocated to any processor

• This may not always be the case because of resource requirements and so on
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Partitioned scheduling

• We can use either fixed priority (rate monotonic) or dynamic priority (EDF) 
policies

• Need to assign tasks to processors such that the utilization bound (or other 
schedulability condition) is satisfied

• For simplicity we will assume that any task can be allocated to any processor

• This may not always be the case because of resource requirements and so on
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Any assignment of tasks to 
processors is suitable as long as 
utilization bounds are not violated.

Is closely related to the bin packing 
problem, which is NP-Hard.
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Partitioned scheduling

• Because allocating tasks to processors is NP-Hard, optimal allocation may be 
extremely hard -- especially if we want to allocate tasks to processors at run-
time

• Even when the processors are uniform

• We need heuristics for task allocation

• A popular heuristic is first-fit decreasing (FFD)

• FFD on uniform multiprocessors

• Sort tasks by utilization and order the processors (any order is okay)

• Starting with the task with highest utilization, assign tasks to the first possible 
processor
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Ub =
m + 1

2

Utilization bounds for partitioned scheduling with EDF

• When tasks are allocated to processors using the FFD heuristic, we can derive 
a utilization upper-bound for a uniform multiprocessor system that guarantees 
schedulability

• Let m be the number of processors: then the maximum possible utilization of 
the system is m (each processor can have a utilization up to 1)

• Proof sketch

• Consider a task set with m+1 tasks, each task having utilization 1/2; this task 
set is schedulable

• If each task has utilization slightly greater than 1/2, the task set is not 
schedulable
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Utilization bounds for partitioned scheduling with EDF

• When tasks are allocated to processors using the FFD heuristic, we can derive 
a utilization upper-bound for a uniform multiprocessor system that guarantees 
schedulability

• This is a sufficient condition but not necessary
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Utilization bounds for partitioned scheduling with EDF
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• When tasks are allocated to processors using the FFD heuristic, we can derive 
a utilization upper-bound for a uniform multiprocessor system that guarantees 
schedulability

• This is a sufficient condition but not necessary
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Utilization bounds for partitioned scheduling with EDF

• The utilization can be rather poor even though we have many processors

• The overall utilization is as low as 50%!

• When tasks are allocated to processors using the FFD heuristic, we can derive 
a utilization upper-bound for a uniform multiprocessor system that guarantees 
schedulability

• This is a sufficient condition but not necessary
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Utilization bounds for partitioned scheduling

• The utilization bound can be improved if we know that the maximum individual 
task utilization is Umax

• With some extra information, the utilization bound is significantly better

• For rate monotonic scheduling of tasks on a multiprocessor, one approach is 
to assume that the utilization of any individual processor should be less than 
69%

• We can do better but we will not deal with those results now

• Given the allocation scheme (such as FFD) it is not hard to verify schedulability
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Global scheduling

• Is an alternative to partitioning

• Tasks may migrate among processors

• Appropriate for tightly-coupled systems
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Global scheduling

• It is much harder to derive schedulability conditions for global scheduling on 
multiprocessors

• Still a very active research problem

• A sample result [Srinivasan & Baruah]: If the utilization of each task is less than 
m/(2m-1) where m is the number of processors then U ≤ m2/(2m-1) is a 
sufficient (not necessary) condition for schedulability
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Multiprocessor scheduling

• There are more results concerning response times for scheduling on 
multiprocessors, but we will not discuss them in this course

• Fault tolerance in a multiprocessor system

• We can tolerate a limited number of processor failures by replicating a task on 
more than one processor

• Specific task allocation policies can be developed taking this constraint into 
account

• We will discuss fault tolerance and reliability issues in greater detail in the next 
few lectures
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Highlights

• This slide set provides a brief overview of multiprocessor platforms and real-
time scheduling

• Benefits of multiprocessor platforms

• Models of multiprocessor systems

• Identical processors, uniform processors, heterogeneous processors

• Scheduling models

• Partitioned scheduling, global scheduling

• Utilization bounds

• Specifically for partitioned scheduling

• Tasks allocated to processors using the FFD heuristic
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