
1 Solutions to assignment 2, due May 24

Problem 11.1 Let a, b, c, d ∈ Z with a, c 6= 0. Prove that if a | b and c | d, then
ac | (ad + bc).

Solution: Since a | b, we have that there exists an integer k with the
property that ka = b. Similarly, as c | d we have that there is an integer `
such that `c = d. Thus we have that

ad + bc = a(`c) + (ka)c
= ac` + ack

= ac(` + k).

As ` + k is an integer we have then that ac | ad + bc as desired.

Problem 11.2 Let a, b,∈ Z with a 6= 0. Prove that if a | b, then a | (−b) and (−a) | b.

Solution: We are given that a | b and thus that there is an integer k
so that ka = b. From this we can conclude that (−k)a = −b, and that
(−k)(−a) = b. As −k is also an integer, the �rst of these yields that
a | (−b), and the second, that (−a) | b as claimed.

Problem 11.3 Let a, b, c ∈ Z with a, c, 6= 0. Prove that if ac | bc, then a | b.

Solution: We are, as before, given that there is an integer k with the
property that k(ac) = bc. Since c 6= 0, we can divide both sides by c
(`cancelling' c, if you will), to yield that ka = b. But this means that a | b,
as we wanted.

Problem 11.4 Prove that 3 | (n3 − n) for every integer n.

Solution: We would �rst like to note that this is very similar to something
we covered in class, where we showed that 3 | n(n + 1)(n + 2) for every
integer n.

We will �rst note that n3 − n = n(n2 − 1). We have three cases (n = 3k,
n = 3k + 1, n = 3k + 2) to deal with.

(a) Case 1: n = 3k. In this case, n3−n = 3k
(
(3k)2− 1

)
which is clearly

divisibly by 3.

(b) Case 2: n = 3k + 1. In this case we have

n2 − 1 = (3k + 1)2 − 1 = 9k2 + 6k + 1− 1 = 3(3k2 + 2k)

and so n(n2 − 1) = 3(3k + 1)(3k2 + 2k), and so is divisible by 3.
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(c) Case 3: n = 3k + 2. Lastly, we have that

n2 − 1 = (3k + 2)2 − 1 = 9k2 + 12k + 4− 1 = 3(3k2 + 4k + 1)

and so n(n2 − 1) = 3(3k + 2)(3k2 + 4k + 1) which is also divisible by
three.

As in each of the three cases (which are exhaustive i.e. every integer falls
into one of those cases) we have that n3−n is divisible by three, the result
follows.

Problem 11.5 Prove that if n = k3 + 1 ≥ 3, where k ∈ Z, then n is not prime.

Solution: As in the given hint, we note that k3 +1 = (k +1)(k2− k +1).
Thus we can always factor n as a product of two integers, and so it could
only be prime if one of those integers was equal to 1. That is, the only
way that it could be prime is if k + 1 = 1 or if k2 − k + 1 = 1.

In the �rst case we would have k = 0 and so n = 1 which is not greater
than 3. In the second case, k2 − k = 0 which has k = 0, 1 as solutions.
The latter case yields that n = 13 + 1 = 2 which is also less than three.
Thus if n > 3, and n = k3 + 1, n must be composite.

Problem 11.9 Prove that for every positive integer n, there exist n consecutive positive
integers, each of which is composite.

Solution: A composite number is one for which we can write n = ab for
some 1 < a < n, and 1 < b < n. Equivalently, n is composite if there is
some number 1 < a < n such that a | n.
Consider, as suggested, the numbers

2 + (n + 1)!, 3 + (n + 1)!, . . . , n + (n + 1)!, (n + 1) + (n + 1)!.

Note that there are n of these numbers. The goal is to show that these
are all composite.

As an example, consider n = 4. Then (4 + 1)! = 5! = 120, and so these
numbers are

122, 123, 124, 125

The �rst is even, the second, divisible by three, the fourth is even, and
the last divisible by 5. So they are all composite.

Let us turn this into a proof.

We �rst note that by de�nition, we always have that if k ≤ m, then k | m!.
Thus for all integers 2 ≤ k ≤ (n + 1), we have that k | (n + 1)!. We also
have that for all such integers, k | k trivially.

Lastly, we have that if k | a and k | b, that k | (a + b).
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It now follows that

2 | 2 + (n + 1)!
3 | 3 + (n + 1)!

...

n | n + (n + 1)!
n + 1 | n + 1 + (n + 1)!

and so all of these numbers, having proper divisors, must be composite.

Note that these numbers might not have any divisors in common!
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