1 Solutions to assignment 2, due May 24

Problem 11.1 Let $a, b, c, d \in \mathbb{Z}$ with $a, c \neq 0$. Prove that if $a \mid b$ and $c \mid d$, then $a c \mid(a d+b c)$.

Solution: Since $a \mid b$, we have that there exists an integer k with the property that $k a=b$. Similarly, as $c \mid d$ we have that there is an integer ℓ such that $\ell c=d$. Thus we have that

$$
\begin{aligned}
a d+b c & =a(\ell c)+(k a) c \\
& =a c \ell+a c k \\
& =a c(\ell+k) .
\end{aligned}
$$

As $\ell+k$ is an integer we have then that $a c \mid a d+b c$ as desired.
Problem 11.2 Let $a, b, \in Z$ with $a \neq 0$. Prove that if $a \mid b$, then $a \mid(-b)$ and $(-a) \mid b$.

Solution: We are given that $a \mid b$ and thus that there is an integer k so that $k a=b$. From this we can conclude that $(-k) a=-b$, and that $(-k)(-a)=b$. As $-k$ is also an integer, the first of these yields that $a \mid(-b)$, and the second, that $(-a) \mid b$ as claimed.

Problem 11.3 Let $a, b, c \in \mathbb{Z}$ with $a, c, \neq 0$. Prove that if $a c \mid b c$, then $a \mid b$.

Solution: We are, as before, given that there is an integer k with the property that $k(a c)=b c$. Since $c \neq 0$, we can divide both sides by c ('cancelling' c, if you will), to yield that $k a=b$. But this means that $a \mid b$, as we wanted.

Problem 11.4 Prove that $3 \mid\left(n^{3}-n\right)$ for every integer n.

Solution: We would first like to note that this is very similar to something we covered in class, where we showed that $3 \mid n(n+1)(n+2)$ for every integer n.
We will first note that $n^{3}-n=n\left(n^{2}-1\right)$. We have three cases $(n=3 k$, $n=3 k+1, n=3 k+2)$ to deal with.
(a) Case 1: $n=3 k$. In this case, $n^{3}-n=3 k\left((3 k)^{2}-1\right)$ which is clearly divisibly by 3 .
(b) Case 2: $n=3 k+1$. In this case we have

$$
n^{2}-1=(3 k+1)^{2}-1=9 k^{2}+6 k+1-1=3\left(3 k^{2}+2 k\right)
$$

and so $n\left(n^{2}-1\right)=3(3 k+1)\left(3 k^{2}+2 k\right)$, and so is divisible by 3 .
(c) Case 3: $n=3 k+2$. Lastly, we have that

$$
n^{2}-1=(3 k+2)^{2}-1=9 k^{2}+12 k+4-1=3\left(3 k^{2}+4 k+1\right)
$$

and so $n\left(n^{2}-1\right)=3(3 k+2)\left(3 k^{2}+4 k+1\right)$ which is also divisible by three.

As in each of the three cases (which are exhaustive i.e. every integer falls into one of those cases) we have that $n^{3}-n$ is divisible by three, the result follows.

Problem 11.5 Prove that if $n=k^{3}+1 \geq 3$, where $k \in \mathbb{Z}$, then n is not prime.
Solution: As in the given hint, we note that $k^{3}+1=(k+1)\left(k^{2}-k+1\right)$. Thus we can always factor n as a product of two integers, and so it could only be prime if one of those integers was equal to 1 . That is, the only way that it could be prime is if $k+1=1$ or if $k^{2}-k+1=1$.

In the first case we would have $k=0$ and so $n=1$ which is not greater than 3 . In the second case, $k^{2}-k=0$ which has $k=0,1$ as solutions. The latter case yields that $n=1^{3}+1=2$ which is also less than three. Thus if $n>3$, and $n=k^{3}+1, n$ must be composite.

Problem 11.9 Prove that for every positive integer n, there exist n consecutive positive integers, each of which is composite.

Solution: A composite number is one for which we can write $n=a b$ for some $1<a<n$, and $1<b<n$. Equivalently, n is composite if there is some number $1<a<n$ such that $a \mid n$.
Consider, as suggested, the numbers

$$
2+(n+1)!, 3+(n+1)!, \ldots, n+(n+1)!,(n+1)+(n+1)!.
$$

Note that there are n of these numbers. The goal is to show that these are all composite.
As an example, consider $n=4$. Then $(4+1)!=5!=120$, and so these numbers are

$$
122,123,124,125
$$

The first is even, the second, divisible by three, the fourth is even, and the last divisible by 5 . So they are all composite.
Let us turn this into a proof.
We first note that by definition, we always have that if $k \leq m$, then $k \mid m$!. Thus for all integers $2 \leq k \leq(n+1)$, we have that $k \mid(n+1)$!. We also have that for all such integers, $k \mid k$ trivially.
Lastly, we have that if $k \mid a$ and $k \mid b$, that $k \mid(a+b)$.

It now follows that

$$
\begin{gathered}
2 \mid 2+(n+1)! \\
3 \mid 3+(n+1)! \\
\vdots \\
n \mid n+(n+1)! \\
n+1 \mid n+1+(n+1)!
\end{gathered}
$$

and so all of these numbers, having proper divisors, must be composite. Note that these numbers might not have any divisors in common!

