

Beta-Blockers In Sepsis

Should we slow the septic heart or our own enthusiasm?

Ernest Law, BSc (Pharm), ACPR, BCPS Doctor of Pharmacy Student, Class of 2014 Faculty of Pharmaceutical Sciences University of British Columbia <u>Ernest.Law@alumni.ubc.ca</u>

Definitions

Definition	SIRS*	Hypotension**	End-organ damage
Sepsis	 Image: A second s	+/-	+/-
Severe sepsis		+/-	
Sepsis-induced tissue hypotension	 Image: A second s	✓	
Septic shock		(despite fluid resuscitation)	

*SIRS = systemic inflammatory response syndrome

** = SBP <90 or MAP <70 or SBP ↓ 40 mm Hg

"Shock is the manifestation of the rude unhinging of the machinery of life."

-Samuel Gross, 1862

Sepsis

Hospitalization rates for septicemia or sepsis more than doubled from 2000 through 2008.

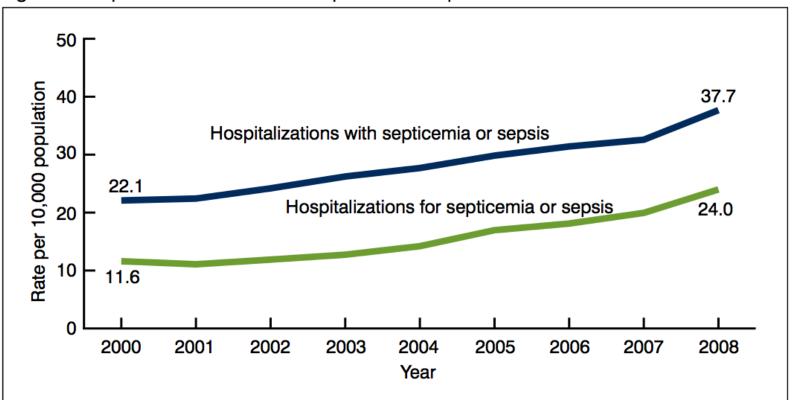


Figure 1. Hospitalizations for and with septicemia or sepsis

CDC/NCHS, National Hospital Dischargae Survey, 2008

Sepsis

Table. Hospitalizations for septicemia or sepsis compared with hospitalizations for other diagnoses, by discharge disposition, 2008

Characteristic	Septicemia or sepsis	Other diagnoses
Disposition	Perce	ent
Routine ¹	39	79
Transfer to other short-term care facility ¹	6	3
Transfer to long-term care institution ¹	30	10
Died during the hospitalization ¹	17	2
Other or not stated	8	6
Total	100	100

¹Difference is statistically significant at the 0.05 level.

SOURCE: CDC/NCHS, National Hospital Discharge Survey, 2008.

Sepsis

Table. Hospitalizations for septicemia or sepsis compared with hospitalizations for other diagnoses, by discharge disposition, 2008

Characteristic	Septicemia or sepsis	Other diagnoses		
Disposition	Percent			
Routine ¹	39	79		
Transfer to other short-term care facility ¹	6	3		
Transfer to long-term care institution ¹	30	10		
Died during the hospitalization ¹	17	2		
Other or not stated	8	6		
Total	100	100		

¹Difference is statistically significant at the 0.05 level.

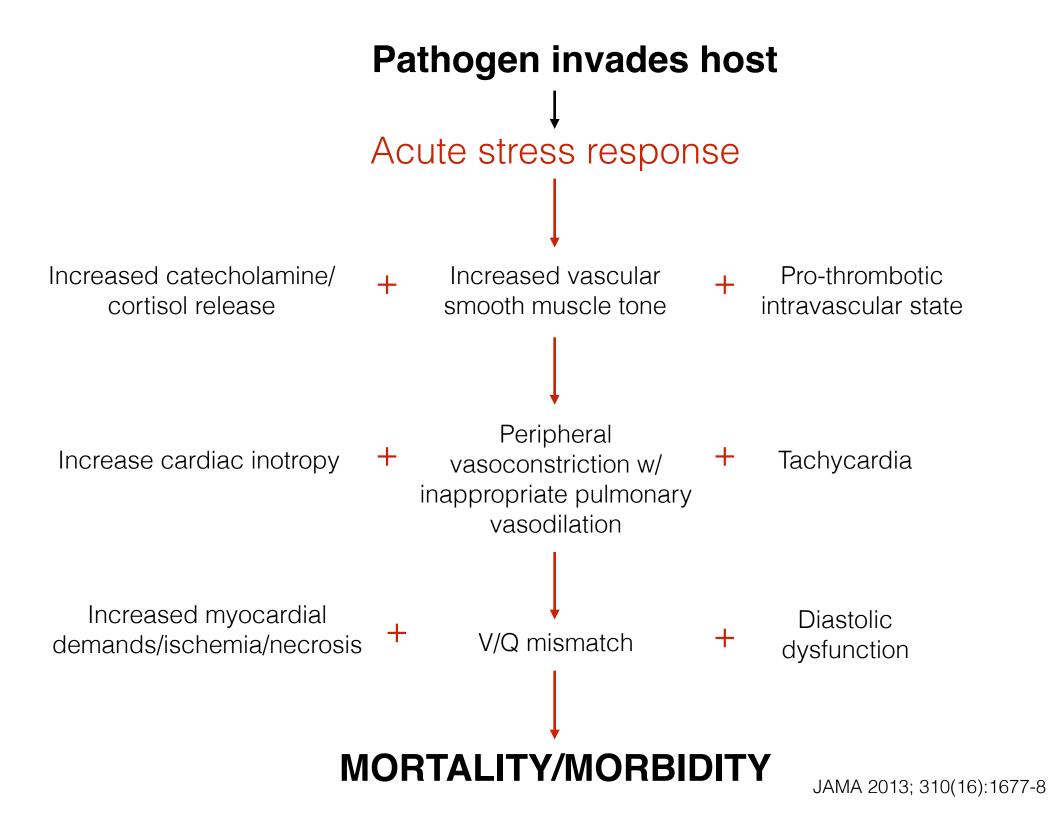
SOURCE: CDC/NCHS, National Hospital Discharge Survey, 2008.

SURVIVING SEPSIS CAMPAIGN BUNDLES

TO BE COMPLETED WITHIN 3 HOURS:

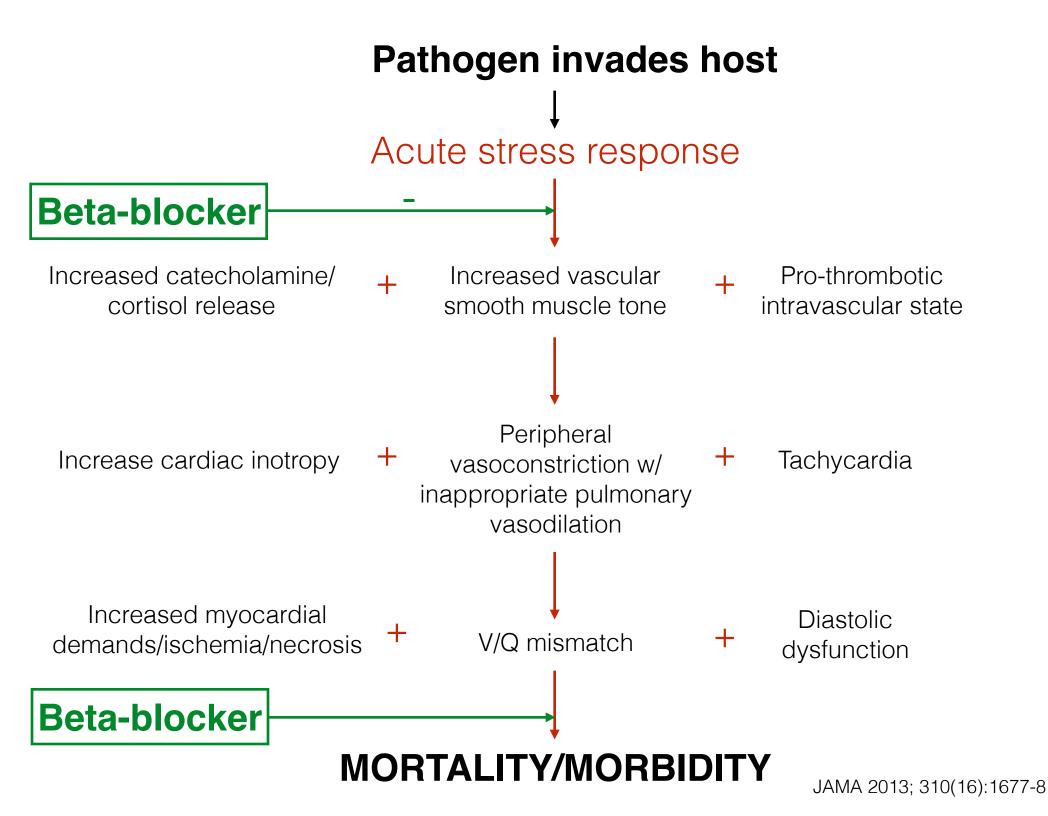
- 1) Measure lactate level
- 2) Obtain blood cultures prior to administration of antibiotics
- 3) Administer broad spectrum antibiotics
- Administer 30 mL/kg crystalloid for hypotension or lactate ≥4mmol/L

TO BE COMPLETED WITHIN 6 HOURS:


- 5) Apply vasopressors (for hypotension that does not respond to initial fluid resuscitation) to maintain a mean arterial pressure (MAP) ≥ 65 mm Hg
- 6) In the event of persistent arterial hypotension despite volume resuscitation (septic shock) or initial lactate ≥4 mmol/L (36 mg/dL):
 - Measure central venous pressure (CVP)*
 - Measure central venous oxygen saturation (Scvo₂)*
- 7) Remeasure lactate if initial lactate was elevated*

*Targets for quantitative resuscitation included in the guidelines are CVP of \geq 8 mm Hg, Scvo₂ of \geq 70%, and normalization of lactate.

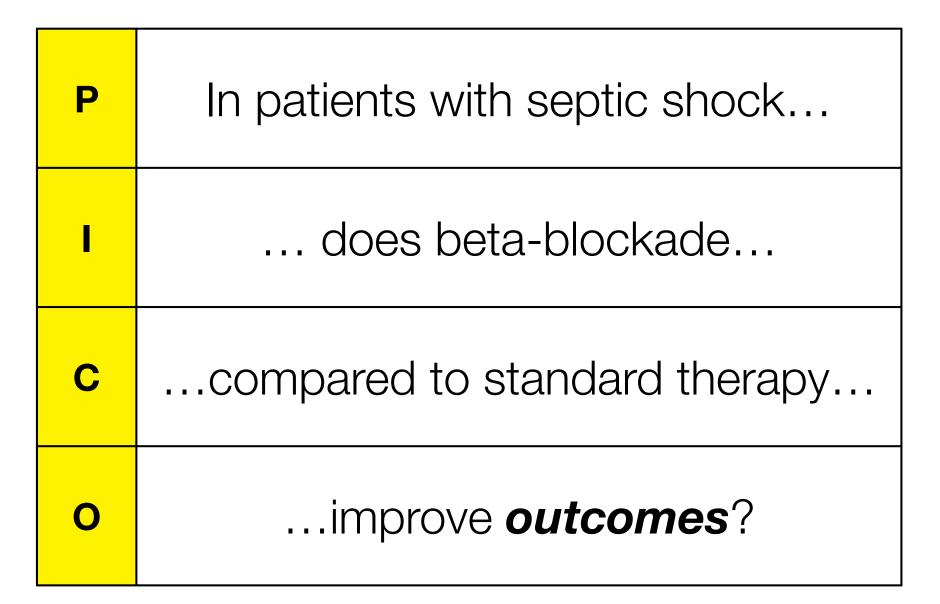
Figure 1. Surviving Sepsis Campaign Care Bundles.


- Multi-system disorder
 - Cardiac depression with impaired LV function in up to 60% of patients

Enter beta-blockers

- Hypertension
 Cirrhosis
- Acute coronary syndromes Thyroid disorders
- Ischemic Heart Disease
- Arrhythmias
- Cardiomyopathies

- Valvular heart disease
- Septic shock



Beta-blockers

- Hypertension
 Cirrhosis
- Acute coronary syndromes
 Thyroid disorders
- Ischemic Heart Disease
- Arrhythmias
- Cardiomyopathies

- Valvular heart disease
- Septic shock?!

Clinical Question

Outcomes

Mortality	All-cause, sepsis-related @ 28 days, 90 days, 1 year
Morbidity	Length of stay (hospital/ICU) End-organ damage (ventilator, renal replacement, vasoactive agents
Normalize surrogate markers	Goal MAP, CVP, lactate, ScVO

Search Strategy

Search terms	Beta-blocker (metoprolol, esmolol, labetaolol, propranolol), sepsis, severe sepsis, septic shock
Search Engines	Google Scholar, MEDLINE, EMBASE, IPA, WHO ICTRP
Limits	Adult humans, English

Results

Systematic Review	None
RCTs	Morelli et al. 2013 Morellie et al. 2013 (pilot)
Observational	Macchia et al. 2012 Gutierrez et al. 2009
(Cohort studies Chart review/ Case series)	Berk et al. 1970 Gore et al. 2006 Schmittinger et al. 2008
Ongoing trials	None

Effect of beta blockers on sepsis outcome

Jose Gutierrez^{1,2} Hossam Amin¹, Roxana Lazarezcu¹, El Kay¹, Tatjana Rundek²⁰⁰⁹

¹ Department of Medicine, New York Medical College, Valhalla, NY, U.S.A.
 ² Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.

- Early vs. late sepsis
- Conflicting data between animal models
- Scarcity of human data
- Objectives:
 - Investigate association between "BB" treatment and mortality
 - Outcomes associated with changes in lactate

D	Retrospective chart review; adult MICU in NYC hospital			
Ρ	Patient w/ sepsis (SIRS + infection); excluded those on vasopressors			
I/C	Data: sex, age, BB administration (Y/N) during the 3 first days of MICU admission , APACHE IV score, APS score, predicted mortality and the presence of CV RFs (CAD, LVD or SVT)			
0	1°: Mortality	2°: ∆ lactate level (admission - "2nd sample"); survival to discharge to ward		
S	Data obtained from first 3 days of MICU admission; descriptive statistics; categorical (Fisher exact); continuous (equal variance two-sample t-test); univariate/multivariate regression?			
Т	July 2006-June 2007			

	Not exposed (N=xx) 54	Exposed (N=xx) 29	p value
Age Mean/SD Range	53.63/17.91 19–96	58.90/16.70 22–90	0.19487
Sex Males N (%) Females	26 (48.15) 28 (51.85)	15 (51.72) 14 (48.28)	0.8201
Smoking N(%) Diabetes Mellitus N(%)	10 (18.52) 20 (37.04)	7 (24.14) 12 (41.38)	0.5770 0.8138
Hypertension N(%)	24 (44.44)	24 (82.76)	0.0010
Dyslipidemia N(%)	9 (16.67)	8 (27.59)	0.2645
CVA/PAD*	3 (5.56)	5 (17.24)	0.1205
APACHE** Mean (SD) Range	73.67 (23.21) 32–110	75.93 (23.47) 40–136	0.6741
APS*** Mean(SD) Range	60.35 (20.41) 21–99	63.34 (18.88) 34–108	0.5153
PM# Mean(SD) Range	23.50 (17.74) 1.2–64	21.84 1.7–76.4	0.6827

* Cerebrovascular accident/peripheral artery disease; ** acute physiology and chronic health evaluation score; *** acute physiological score;

* predicted mortality in percentage.

6% versus 45%

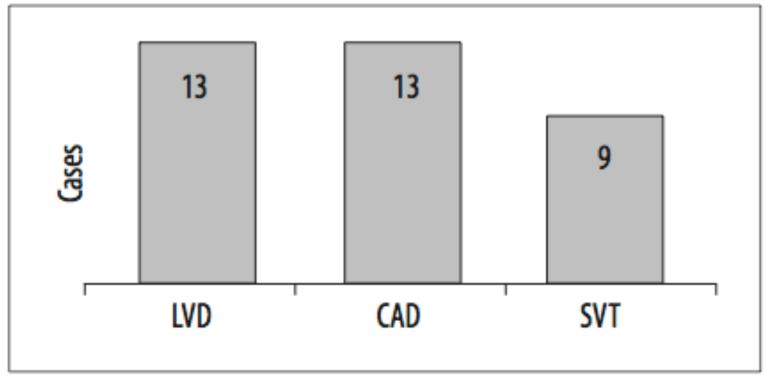


Figure 1. Indications for beta blockers.

Med Sci Monit, 2009; 15(10): CR499-503

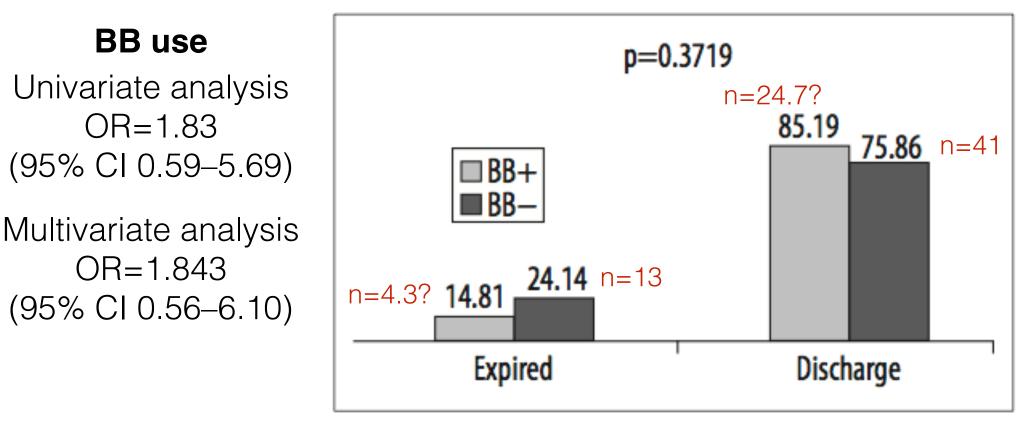


Figure 3. Outcome (%).

 "This warrants further studies but extra precautions should ocurred when administering beta-blockers to severely ill patients who try to physiologically compensate the sepsis-induced hypermetabolism."

Strengths	✓
Limitations	 Retrospective, observational design Small sample size Unclear methods around regression analysis Lack of pertinent data (e.g. vital signs, concomitant interventions, antimicrobial appropriateness) Poorly prepared manuscript; missing statistical methods
	had been and then, we did not made any subsequent evaluation of the patient hospital course.

- Previous prescription of β -blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis*
- Alejandro Macchia, MD; Marilena Romero, PhD; Pablo Dino Comignani, MD; Javier Mariani, MD; Antonio D'Ettorre, PhD; Nadia Prini, MD; Mariano Santopinto, MD; Gianni Tognoni, MD

- Conflicting results among preclinical studies of beta blockers in different models of sepsis
- Clinical data composed largely of small, uncontrolled case series
- Objectives:
 - Evaluate association of <u>previous</u> beta-blocker prescription on short-term outcomes in ICU admitted patients with sepsis/septic shock

D	Retrospective observational cohort study; databases (hospital, Rx, ambulatory) = 12% Italian population
Ρ	Consecutive patients with dx of sepsis (ICD code) admitted directly to ICU from ED or <48 hours transfer from other hospital
I/C	BB definition = >3 Rx fills in 4 month period before hospitalization
0	28 day survival from ICU admission
S	Logistic regression (univariate and multivariate) adjusting for: age, sex, hx of [HTN, dyslipidemia, DM, MI, CHF, AF, COPD, depression, cancer]
Т	Hospitalizations between 2003-2008

- Sensitivity analysis:
 - Subgroup analysis (age, sex, co-morbidities)
 - Propensity score (PS) matching

Table 1. Demographie	c and clinical	characteristics of	the study population
----------------------	----------------	--------------------	----------------------

	Variable	All Patients	β-Blockers	No β-Blockers	p
n=9465	N (%)	9465 (100)	1061 (11.2)	8404 (88.8)	
	Demographic and baseline	conditions			
	Male, n (%)	4565 (49.6)	522 (49.2)	4186 (49.8)	.720
	Age, mean (sp)	72.0 (12.8)	72.0 (10.6)	72.0 (13.0)	.961
	Hypertension, n (%)	4880 (51.6)	862 (81.2)	4018 (47.8)	<.001
	Dyslipemia, n (%)	1039 (11.0)	293 (28.2)	746 (8.9)	<.001
	Diabetes, n (%)	2321 (24.5)	343 (32.3)	1978 (23.5)	<.001
	Prior congestive heart failure, n (%)	1771 (18.7)	438 (41.3)	1333 (15.9)	<.001
	Prior atrial fibrillation, n (%)	602 (6.4)	129 (12.2)	473 (5.6)	<.001
	Prior myocardial infarction, n (%)	107 (1.1)	43 (4.1)	64 (0.8)	<.001
	Chronic obstructive pulmonary disease, n (%)	1522 (16.1)	157 (14.8)	1365 (16.2)	.249
	Depression, n (%)	990 (10.5)	140 (13.2)	850 (10.1)	.003
	Malignancy, n (%)	1947 (20.6)	194 (18.3)	1753 (20.9)	.053
	In-hospital characteristics		,		
	No organ dysfunction	6970 (73.6)	734 (69.2)	6236 (74.2)	.001
	One organ dysfunction	2140 (22.6)	295 (27.8)	1845 (22.0)	<.001
	Two organ dysfunction	308 (3.3)	28 (2.6)	280 (3.3)	.23
	\geq 3 organ dysfunction	47 (0.5)	4 (0.4)	40 (0.5)	.56

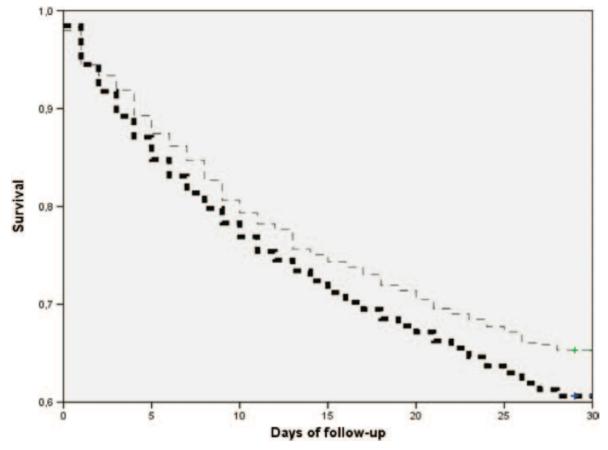


Figure 1. Survival plot for 28-day mortality.

188/1061 (17.7%) vs. 1857/8404 (22.1%) fatal events; Unadjusted OR 0.78 (95% CI 0.66–0.93; p = .005) Adjusted OR 0.81 (95% CI 0.68–0.97; p = .025)

Subgroups	Ν	Events		Interaction p value
Sex				
Male	4708	994	-	.723
Female	4757	1051	-	ł
Age (years)				
<74	4698	586	-8-	.938
>=74	4767	1459		1
Hypertension	1			
Yes	4880	1083	-	.973
No	4585	962		t
Diabetes				
Yes	2321	529		.171
No	7144	1516	-	f
Prior CHF				
Yes	1771	519		.704
No	7694	1526	-	1
Organ dysfur	nction			
Yes	2495	890	+	.333
No	6970	1155	-	t
o "	0.405	00.45		
Overall	9465	2045	•	
			.2 .5	1 1.5 2
			Beta-blockers better	No beta-blockers bette

Crit Care Med 2012; 40:2768–2772

Variable	β-Blockers	Control	р
N (%)	995	995	
Male, n (%)	481 (48.3)	446 (44.8)	.116
Age, mean (SD)	72.5 (10.5)	72.9 (11.5)	.489
Hypetension, n (%)	802 (80.6)	825 (82.9)	.182
Dyslipemia, n (%)	246 (24.7)	232 (23.3)	.463
Diabetes, n (%)	314 (31.6)	305 (30.7)	.663
Prior congestive heart failure, n (%)	394 (39.6)	381 (38.3)	.550
Prior atrial fibrillation, n (%)	112 (11.3)	106 (10.7)	.667
Prior myocardial infarction, n (%)	25 (2.5)	18 (1.8)	.280
Chronic obstructive pulmonary disease, n (%)	149 (15.0)	133 (13.4)	.304
Depression, n (%)	129 (13.0)	153 (15.4)	.123
Malignancy, n (%)	185 (18.6)	167 (16.8)	.290

Table 2. Demographic and clinical characteristics of the propensity score-matched population

995 (of 1061) PS matched to control 1:1
182 (18.3%) vs. 233 (23.4%) fatal events
OR 0.72 (95% Cl 0.57–0.91; p = .004)

• "...our data support the hypothesis that previous prescription of β -blockers may confer a survival advantage to patients who later develop sepsis... (and)... should guide clinical decision to move forward to conduct well-designed, prospective clinical trials testing the effectiveness of this strategy in clinical practice."

Strengths	 Use of comprehensive databases Use of "hard", clinically relevant outcome Appropriate scenario for use propensity scores Reasonable methods to increase "confidence" in data (regression, sensitivity analyses)
Limitations	 Limited information re: prognostic variables for mortality in sepsis (severity of organ dysfunction, appropriateness of antibiotics, source/pathogen of sepsis, etc) Statistical analyses relies heavily on ICD coding Prescription fill ≠ therapeutic effect Generalizability to North America (Italian population)

Morelli et al. 2013

|--|

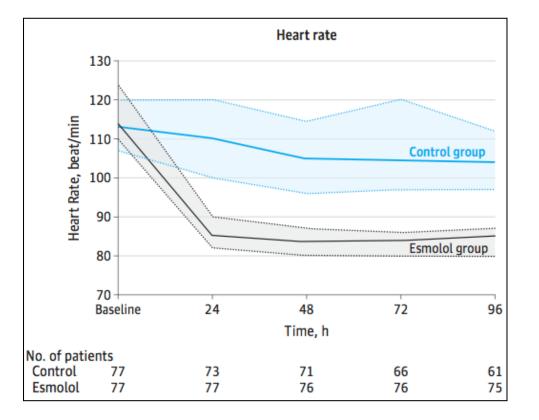
Preliminary Communication | CARING FOR THE CRITICALLY ILL PATIENT

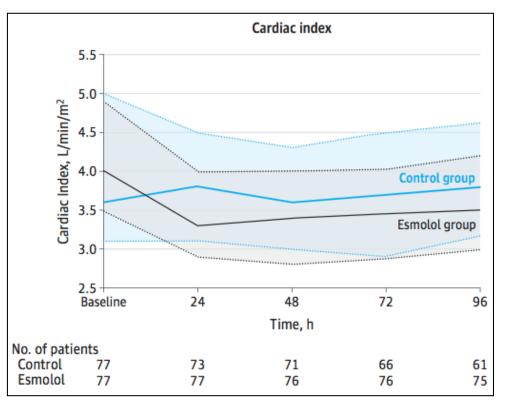
Effect of Heart Rate Control With Esmolol on Hemodynamic and Clinical Outcomes in Patients With Septic Shock A Randomized Clinical Trial

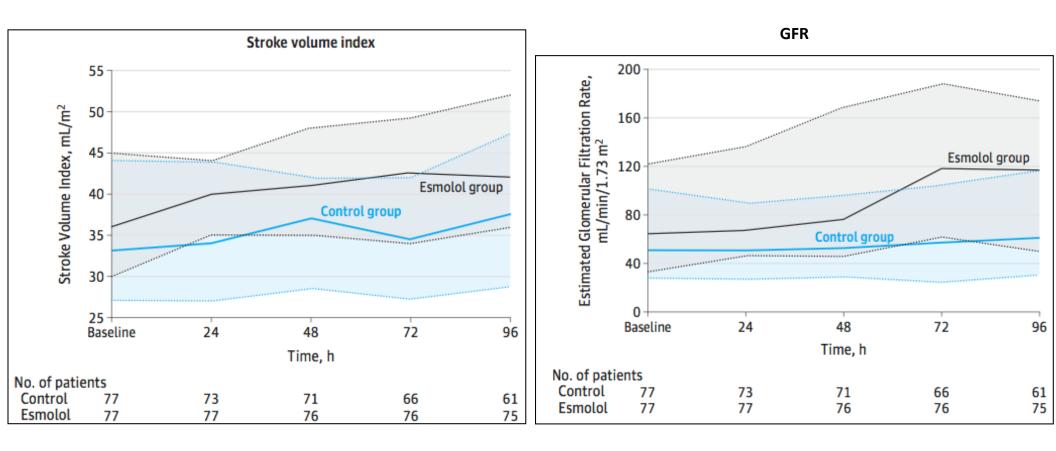
Andrea Morelli, MD; Christian Ertmer, MD; Martin Westphal, MD; Sebastian Rehberg, MD; Tim Kampmeier, MD; Sandra Ligges, PhD; Alessandra Orecchioni, MD; Annalia D'Egidio, MD; Fiorella D'Ippoliti, MD; Cristina Raffone, MD; Mario Venditti, MD; Fabio Guarracino, MD; Massimo Girardis, MD; Luigi Tritapepe, MD; Paolo Pietropaoli, MD; Alexander Mebazaa, MD; Mervyn Singer, MD, FRCP

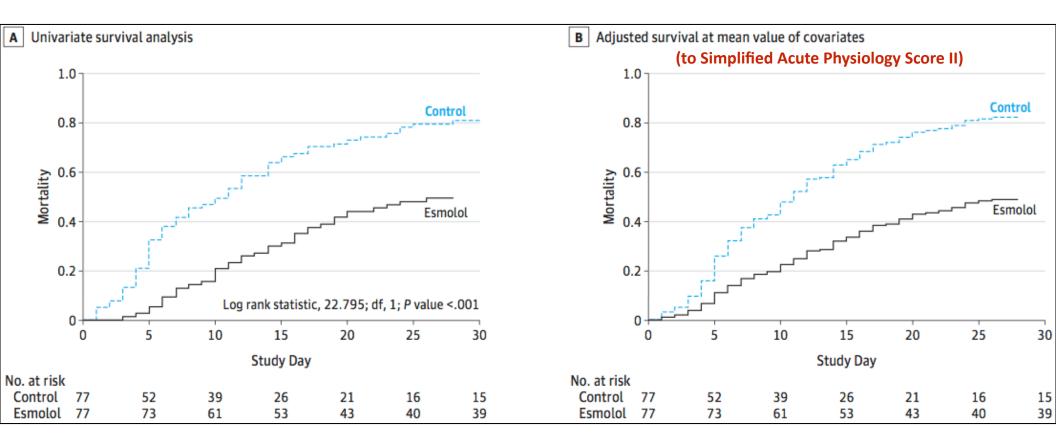
Morelli et al. 2013

- Issue outcomes


 Issue outcomes
- Case series previously reported "good safety profile" (33% mortality; APS score = 53) with PO metoprolol + milrinone
- Hypothesis: IV beta-blocker titrated to HR control = effective approach to improving cardiac function and outcomes


D	Single-centre, P, OL, RCT; Italy				
Ρ	Inclusion: Septic shock (on NE) + HR >95 bpm Exclusion				
	valve disease, pregnancy				
I/C	Esmolol IV infusion @ 25mg/hr titrated q 20 min (by 50mg/hr increments) to achieve HR target <95 bpm vs. control				
	1°: % achieved in HR <95 bpm and >80 bpm over 96 hour				
0	2°: Hemodynamic and organ function measures, NE doses @ 24, 48, 72 and 96 hr; mortality @ 28 days				
S	Sample size calculation: 64 in each group (20% change in HR, 80% power with 2-sided t-test) ITT; AUCs of continuous variables compared (to avoid multiplicity) 28 day mortality with Cox regression				
Т	July 2006-June 2007				


Table 1. Baseline Characteristics of the Study Patients


Esmolol 29 (38.0) 6 (7.8)	Control 20 (26.0)
	20 (26.0)
6 (7.8)	
0(7.0)	6 (7 0)
	6 (7.8)
11 (14.3)	8 (10.4)
6 (7.8)	6 (7.8)
3 (3.9)	8 (10.4)
5 (6.5)	4 (5.2)
0 (0.0)	3 (3.9)
17 (22.0)	22 (28.6)
17 (2210)	22 (2010)
25 (32.5)	21 (27.3)
11 (14.3)	13 (16.9)
5 (6.5)	4 (5.2)
16 (20.8)	20 (26.0)
10 (20.0)	20 (20.0)
	11 (14.3) 6 (7.8) 3 (3.9) 5 (6.5) 0 (0.0) 17 (22.0) 25 (32.5) 11 (14.3)

	24 hours	48 hours	72 hours	96 hours	AUC	p-value
Fluid infusion, mL/24 h						
Esmolol	5000 (4300 to 5400)	4600 (4300 to 5000)	4300 (4000 to 4600)	4000 (3600 to 4300)	3975 (3663 to 4200)	<.001
Control	5200 (4700 to 5800)	5400 (4900 to 5700)	5200 (4800 to 5600)	5400 (4725 to 6000)	4425 (4038 to 4775)	<.001

Table 3. Outcome Data of Study Patients

	No. (%)			
Outcome	Esmolol (n = 77)	Control (n = 77)	ARR/NNT	P Value
Mortality				
28 d	38 (49.4)	62 (80.5)	31.1% / 3	<.001
ICU	44 (57.1)	68 (88.3)	31.2% / 3	<.001
Hospital	52 (67.5)	70 (90.9)	23.4% / 4	<.001
Length of ICU stay, d				
Median (IQR)	19 (11-27)	14 (7-25)	+5 days	.03
Survivors', median (IQR)	17 (9-28)	21 (11-34)		.70
Cause of death, No./total, (%)				
Multiple organ failure	15/52 (28.8)	26/70 (37.1)		
Refractory hypotension	32/52 (61.6)	44/70 (62.9)		.71
Unknown cause	5/52 (9.6%)			

 "For patients in septic shock, the open-label use of esmolol was able to achieve reductions in heart rate to target levels, without an increase in adverse outcomes compared with standard treatment. Further investigation of the effects of esmolol on clinical outcomes is warranted."

	Experimental study design
Strengths	Complete report of data
Strengths	Accounted for severity of illness and fluid administration (non-
	placebo)
Limitations	 Small, single-centre study High mortality rates (~90% vs. SAPS II predicted 50%) & NE use Generalizability to North America (Italian) and lower risk patients Generalizability of intervention (HR target? Or something else?)

Summary

- Represents potential paradigm shift in sepsis pathophysiology and management
- Requires specification of patient population(s) & clear definitions of intervention/target(s)

Conclusion

 Do not recommend as treatment alternative in patients with sepsis without clear indication for beta-blockade

