
Reliable Distributed Systems

Models for distributed computing.
Keeping time in a distributed system.
The Fischer, Lynch and Paterson Result.
The Byzantine Generals Problem.

2

What time is it?

‣  In distributed system we need practical ways to deal with
time
‣  E.g. we may need to agree that update A occurred before update B

‣  Or offer a “lease” on a resource that expires at time 10:10.0150

‣  Or guarantee that a time critical event will reach all interested parties
within 100ms

3

But what does time “mean”?

‣  Time on a global clock?
‣  E.g. with GPS receiver

‣  … or on a machine’s local clock
‣  But was it set accurately?

‣  And could it drift, e.g. run fast or slow?

‣  What about faults, like stuck bits?

‣  … or could try to agree on time

4

Lamport’s approach

‣  Leslie Lamport suggested that we should reduce time to its
basics.
‣  Time lets a system ask “Which came first: event A or event B?”

‣  In effect: time is a means of labeling events so that…
‣  If A happened before B, TIME(A) < TIME(B),

‣  If TIME(A) < TIME(B), A happened before B.

Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM 21, 7 (July 1978), 558-565.

5

Drawing time-line pictures:

p

m

sndp(m)

q
rcvq(m) delivq(m)

D

6

Drawing time-line pictures:

‣  A, B, C and D are “events”.
‣  Could be anything meaningful to the application
‣  So are snd(m) and rcv(m) and deliv(m)

‣  What ordering claims are meaningful?

p

m

A

C

B

sndp(m)

q
rcvq(m) delivq(m)

D

7

Drawing time-line pictures:

‣  A happens before B, and C before D.

‣  “Local ordering” at a single process.

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

BA
p
! DC

q
!

D

8

Drawing time-line pictures:

‣  sndp(m) also happens before rcvq(m).

‣  “Distributed ordering” introduced by a message.

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

)m(rcv)m(snd q

M

p !

D

9

Drawing time-line pictures:

‣  A happens before D.

‣  Transitivity: A happens before sndp(m), which happens before rcvq
(m), which happens before D.

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

10

Drawing time-line pictures:

‣  B and D are concurrent.
‣  Looks like B happens first, but D has no way to know. No

information flowed…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

11

Happens before “relation”

‣  we will say that “A happens before B”, written A→B, if
1.  A→PB according to the local ordering, or

2.  A is a snd and B is a rcv and A→MB, or

3.  A and B are related under the transitive closure of rules (1) and (2).

‣  So far, this is just a mathematical notation, not a
“systems tool.”

12

Logical clocks

‣  A simple tool that can capture parts of the happens before
relation.

‣  First version: uses just a single integer.
‣  Designed for big (64-bit or more) counters.

‣  Each process p maintains LTp, a local counter.

‣  A message m will carry LTm.

13

Rules for managing logical clocks

‣  When an event happens at a process p it increments LTp.
‣  Any event that matters to p.

‣  Normally, also snd and rcv events (since we want receive to occur
“after” the matching send).

‣  When p sends m, set
‣  LTm = LTp.

‣  When q receives m, set
‣  LTq = max(LTq, LTm)+1.

14

Time-line with LT annotations

‣  LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2
‣  LT(rcvq(m))=max(1,2)+1=3, etc…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

LTq 0 0 0 1 1 1 1 3 3 3 4 5 5

LTp 0 1 1 2 2 2 2 2 2 3 3 3 3

15

Logical clocks

‣  If A happens before B, A→B, then LT(A)<LT(B).

‣  But converse might not be true:
‣  If LT(A)<LT(B) can not be sure that A→B.

‣  This is because processes that do not communicate still
assign timestamps and hence events will “seem” to have
an order.

16

Can we do better?

‣  One option is to use vector clocks.

‣  Here we treat timestamps as a list.
‣  One counter for each process.

‣  Rules for managing vector times differ from what
did with logical clocks.

17

Vector clocks

‣  Clock is a vector: e.g. VT(A)=[1, 0]
‣  We will just assign p index 0 and q index 1.
‣  Vector clocks require either agreement on the numbering, or that

the actual process ids be included with the vector.

‣  Rules for managing vector clock:
‣  When event happens at p, increment VTp[indexp].

‣  Normally, also increment for snd and rcv events.

‣  When sending a message, set VT(m)=VTp.
‣  When receiving, set VTq=max(VTq, VT(m)).

18

Time-line with VT annotations

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

23 2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

30 3
0

3
0

VT(m)=[2,0]

Could also be [1,0] if we decide not to increment the clock on a
snd event. Decision depends on how the timestamps will be used.

19

Rules for comparison of VTs

‣  We will say that VTA ≤ VTB if
‣  ∀I, VTA[i] ≤ VTB[i].

‣  And we will say that VTA < VTB if
‣  VTA ≤ VTB but VTA ≠ VTB.
‣  That is, for some i, VTA[i] < VTB[i].

‣  Examples?
‣  [2,4] ≤ [2,4]
‣  [1,3] < [7,3]
‣  [1,3] is “incomparable” to [3,1]

20

Time-line with VT annotations

‣  VT(A)=[1,0]. VT(D)=[2,4]. So VT(A)<VT(D).

‣  VT(B)=[3,0]. So VT(B) and VT(D) are incomparable.

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

23 2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

30 3
0

3
0

VT(m)=[2,0]

21

Vector time and happens before

‣  If A→B, then VT(A)<VT(B).
‣  Write a chain of events from A to B.

‣  Step by step the vector clocks get larger.

‣  If VT(A)<VT(B) then A→B.
‣  Two cases: if A and B both happen at same process p, trivial;

‣  If A happens at p and B at q, can trace the path back by which q
“learned” VTA[p].

‣  Otherwise A and B happened concurrently.

22

Introducing “wall clock time”

‣  There are several options:
‣  “Extend” a logical clock or vector clock with the clock

time and use it to break ties.
‣  Makes meaningful statements like “B and D were concurrent,

although B occurred first.”
‣  But unless clocks are closely synchronized such statements

could be erroneous!

‣  We use a clock synchronization algorithm to reconcile
differences between clocks on various computers in
the network.

23

Synchronizing clocks

‣  Without help, clocks will often differ by many milliseconds.
‣  Problem is that when a machine downloads time from a network

clock it can not be sure what the delay was.

‣  This is because the “uplink” and “downlink” delays are often very
different in a network.

‣  Outright failures of clocks are rare…

24

Synchronizing clocks

‣  Suppose p synchronizes with time.windows.com and notes that 123 ms elapsed while the protocol
was running… what time is it now?

p

time.windows.com

What time is it?

09:23.02921

Delay: 123ms

25

Synchronizing clocks

‣  Options?
‣  P could guess that the delay was evenly split, but this is rarely the

case in WAN settings (downlink speeds are higher).
‣  P could ignore the delay.
‣  P could factor in only “certain” delay, e.g. if we know that the link

takes at least 5ms in each direction. Works best with GPS time
sources!

‣  In general, can not do better than uncertainty in the link
delay from the time source down to P.

26

Consequences?

‣  In a network of processes, we must assume that clocks are
‣  Not perfectly synchronized. Even GPS has uncertainty, although

small.
‣  We say that clocks are “inaccurate.”

‣  And clocks can drift during periods between synchronizations.
‣  Relative drift between clocks is their “precision.”

27

Thought question

‣  We are building an anti-missile system.

‣  Radar tells the interceptor where it should be and what
time to get there.

‣  Do we want the radar and interceptor to be as accurate
as possible, or as precise as possible?

28

Thought question

‣  We want them to agree on the time but it is not important
whether they are accurate with respect to “true” time.
‣  “Precision” matters more than “accuracy.”

‣  Although for this, a GPS time source would be the way to go.
‣  Might achieve higher precision than we can with an “internal”

synchronization protocol!

29

Real systems?

‣  Typically, some “master clock” owner periodically
broadcasts the time.

‣  Processes then update their clocks.
‣  But they can drift between updates.

‣  Hence we generally treat time as having fairly low accuracy.

‣  Often precision will be poor compared to message round-trip times.

30

Clock synchronization

‣  To optimize for precision we can:
‣  Set all clocks from a GPS source or some other time “broadcast”

source.
‣  Limited by uncertainty in downlink times.

‣  Or run a protocol between the machines.
‣  Many have been reported in the literature.

‣  Precision limited by uncertainty in message delays.

‣  Some can even overcome arbitrary failures in a subset of the
machines!

31

“Simultaneous” actions

‣  There are many situations in which we want to talk about
some form of simultaneous event
‣  Our missile interceptor is one case
‣  But think about updating replicated data

‣  Perhaps we have multiple conflicting updates
‣  The need is to ensure that they will happen in the same order at all

copies
‣  This “looks” like a kind of simultaneous action

32

Temporal distortions

‣  Things can be complicated because we can not predict.
‣  Message delays (they vary constantly).

‣  Execution speeds (often a process shares a machine with many
other tasks).

‣  Timing of external events.

‣  Lamport looked at this question too.

33

Temporal distortions

‣  What does “now” mean?

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

34

Temporal distortions

‣  What does “now” mean?

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

35

Temporal distortions

‣  Timelines can “stretch”…

‣  … caused by scheduling effects, message delays,
message loss…

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

36

Temporal distortions

‣  Timelines can “shrink.”

‣  e.g. something lets a machine speed up

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

37

Temporal distortions

‣  Cuts represent instants of time.

‣  $

‣  But not every “cut” makes sense.
‣  Black cuts could occur but not gray ones.

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

38

Consistent cuts and snapshots

‣  Idea is to identify system states that “might” have occurred
in real-life.
‣  Need to avoid capturing states in which a message is received but

nobody is shown as having sent it.

‣  This the problem with the gray cuts.

39

Temporal distortions

‣  Red messages cross gray cuts “backwards.”

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

40

Temporal distortions

‣  Red messages cross gray cuts “backwards.”

‣  In a nutshell: the cut includes a message that “was
never sent.”

 p 0 a

e

p 3

b

p 2

p 1
c

41

Who cares?

‣  Suppose, for example, that we want to do distributed
deadlock detection.
‣  System lets processes “wait” for actions by other processes.

‣  A process can only do one thing at a time.

‣  A deadlock occurs if there is a circular wait.

42

Deadlock detection “algorithm”

‣  p worries: perhaps we have a deadlock.

‣  p is waiting for q, so sends “What’s your state?”

‣  q, on receipt, is waiting for r, so sends the same question…
and r for s…. And s is waiting on p.

43

Suppose we detect this state

‣  We see a cycle…

‣  … but is it a deadlock?

p q

s r

Waiting for

Waiting for

Waiting for Waiting for

44

Phantom deadlocks!

‣  Suppose system has a very high rate of locking.

‣  Then perhaps a lock release message “passed” a query
message,
‣  i.e. we see “q waiting for r” and “r waiting for s” but in fact, by the

time we checked r, q was no longer waiting!

‣  In effect: we checked for deadlock on a gray cut – an
inconsistent cut.

45

Consistent cuts and snapshots

‣  Goal is to draw a line across the system state such that
‣  Every message “received” by a process is shown as having been

sent by some other process.

‣  Some pending messages might still be in communication channels.

‣  A “cut” is the frontier of a “snapshot.”

46

Chandy/Lamport Algorithm

‣  Assume that if pi can talk to pj they do so using a lossless,
FIFO connection.

‣  Now think about logical clocks:
‣  Suppose someone sets his clock way ahead and triggers a “flood”

of messages.

‣  As these reach each process, it advances its own time…
eventually all do so.

‣  The point where time jumps forward is a consistent cut
across the system.

47

Using logical clocks to make cuts

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

Message sets the time
forward by a “lot”

Algorithm requires FIFO channels: must
delay e until b has been delivered!

48

Using logical clocks to make cuts

 p 0 a

f

e

p 3

b

p 2

p 1
c

d

“Cut” occurs at point
where time advanced

49

Turn idea into an algorithm

‣  To start a new snapshot, pi …
‣  Builds a message: “Pi is initiating snapshot k”.

‣  The tuple (pi, k) uniquely identifies the snapshot.

‣  In general, on first learning about snapshot (pi, k), px
‣  Writes down its state: px’s contribution to the snapshot;
‣  Starts “tape recorders” for all communication channels;
‣  Forwards the message on all outgoing channels;
‣  Stops “tape recorder” for a channel when a snapshot message for

(pi, k) is received on it.

‣  Snapshot consists of all the local state contributions and
all the tape-recordings for the channels.

50

Chandy/Lamport

‣  This algorithm, but implemented with an outgoing flood,
followed by an incoming wave of snapshot contributions.

‣  Snapshot ends up accumulating at the initiator, pi.

‣  Algorithm does not tolerate process failures or message
failures.

51

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

52

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

I want to start
a snapshot

53

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p records local state

54

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p starts monitoring
incoming channels

55

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

“contents of channel p-y”

56

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p floods message on
outgoing channels…

57

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

58

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q is done

59

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

60

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

61

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

z s

62

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

z

x

u

s

63

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

w

z

x

u

s

y

r

64

Chandy/Lamport

p
q

r

s

t

u

v

w

x
y

z

A snapshot of a network

q

x

u

s

v

r

t

w

p

y

z

Done!

65

What’s in the “state”?

‣  In practice we only record things important to the
application running the algorithm, not the “whole” state,
‣  e.g. “locks currently held”, “lock release messages.”

‣  Idea is that the snapshot will be
‣  Easy to analyze, letting us build a picture of the system state,
‣  And will have everything that matters for our real purpose, like

deadlock detection.

66

Other algorithms?

‣  Many algorithms have a consistent cut mechanism hidden
within.
‣  More broadly, notions of time are sometimes explicit in algorithms,
‣  But are often used as the insight that motivated the developer.
‣  By thinking about time, he or she was able to reason about a

protocol.

67

Who needs failure “models”?

‣  Role of a failure model
‣  Lets us reduce fault-tolerance to a mathematical question.

‣  In model M, can problem P be solved?
‣  How costly is it to do so?
‣  What are the best solutions?
‣  What tradeoffs arise?

‣  And clarifies what we are saying.
‣  Lacking a model, confusion is common.

68

Categories of failures

‣  Crash faults, message loss
‣  These are common in real systems.

‣  Crash failures: process simply stops, and does nothing wrong
that would be externally visible before it stops.

‣  These faults can not be directly detected.

69

Categories of failures

‣  Fail-stop failures.
‣  These require system support.
‣  Idea is that the process fails by crashing, and the system notifies

anyone who was talking to it.
‣  With fail-stop failures we can overcome message loss by just

resending packets, which must be uniquely numbered.
‣  Easy to work with… but rarely supported.

70

Categories of failures

‣  Non-malicious Byzantine failures.
‣  This is the best way to understand many kinds of corruption and

buggy behaviors.
‣  A program can do pretty much anything, including sending

corrupted messages.
‣  But it does not do so with the intention of messing up our

protocols.

‣  Unfortunately, a pretty common mode of failure.

71

Categories of failure

‣  Malicious, true Byzantine, failures.
‣  Model is of an attacker who has studied the system and wants to

break it.
‣  She can corrupt or replay messages, intercept them at will,

compromise programs and substitute hacked versions.

‣  This is a worst-case scenario mindset.
‣  In practice, doesn’t actually happen.
‣  Very costly to defend against; typically used in very limited ways

(e.g., key mgt. server).

72

Models of failure

‣  The question here concerns how failures appear in formal
models used when proving things about protocols.

‣  Lamport’s happens-before relationship [→]
‣  Model already has processes, messages, temporal ordering.

‣  Assumes messages are reliably delivered.

73

Recall: Two kinds of models

‣  We tend to work within two models:
‣  Asynchronous model makes no assumptions about time

‣  Lamport’s model is a good fit.
‣  Processes have no clocks, will wait indefinitely for messages, could

run arbitrarily fast/slow.
‣  Distributed computing at an “eons” timescale.

‣  Synchronous model assumes a lock-step execution in which
processes share a clock.

74

Adding failures in Lamport’s model

‣  Also called the asynchronous model.

‣  Normally we just assume that a failed process “crashes”:
it stops doing anything.
‣  Notice that in this model, a failed process is indistinguishable

from a delayed process.

‣  In fact, the decision that something has failed takes on an
arbitrary flavour.

‣  Suppose that at point e in its execution, process p decides to
treat q as faulty…

75

What about the synchronous model?

‣  Here, we also have processes and messages.
‣  But communication is usually assumed to be reliable: any

message sent at time t is delivered by time t+δ.
‣  Algorithms are often structured into rounds, each lasting some

fixed amount of time Δ, giving time for each process to
communicate with every other process.

‣  In this model, a crash failure is easily detected.

‣  When people have considered malicious failures, they
often used this model.

76

Neither model is realistic

‣  Value of the asynchronous model is that it is so stripped
down and simple.
‣  If we can do something “well” in this model we can do at least as

well in the real world.
‣  So we will want “best” solutions.

‣  Value of the synchronous model is that it adds a lot of
“unrealistic” mechanism.
‣  If we can not solve a problem with all this help, we probably can

not solve it in a more realistic setting!
‣  So seek impossibility results.

77

Examples of results

‣  We saw an algorithm for taking a global snapshot in an
asynchronous system.

‣  And it is common to look at problems like agreeing on an
ordering.
‣  Often reduced to “agreeing on a bit” (0/1).

‣  To make this non-trivial, we assume that processes have an input
and must pick some legitimate input value.

78

Connection to consistency

‣  We started by talking about consistency.
‣  We found that many (not all) notions of consistency reduce to

forms of agreement on the events that occurred and their order.
‣  Could imagine that our “bit” represents

‣  Whether or not a particular event took place;
‣  Whether event A is the “next” event.

‣  Thus fault-tolerant consensus is deeply related to fault-tolerant
consistency.

79

Fischer, Lynch and Patterson

‣  A surprising result:
‣  Impossibility of asynchronous distributed consensus with a

single faulty process.

‣  They prove that no asynchronous algorithm for agreeing
on a one-bit value can guarantee that it will terminate in
the presence of crash faults.
‣  And this is true even if no crash actually occurs!

‣  Proof constructs infinite non-terminating runs.

80

Core of the FLP result

‣  They start by looking at a system with inputs that are all
the same.
‣  All 0s must decide 0, all 1s decide 1.

‣  Now they explore mixtures of inputs and find some initial
set of inputs with an uncertain (“bivalent”) outcome.

‣  They focus on this bivalent state.

81

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S* denotes bivalent state
S0 denotes a decision 0 state
S1 denotes a decision 1 state

Sooner or later all executions
decide 0

Sooner or later all executions
decide 1

82

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

e

e is a critical event that
takes us from a bivalent to
a univalent state: eventually

we will “decide” 0

83

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

They delay e and show that
there is a situation in which
the system will return to a

bivalent state

S’
*

84

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S’
*

In this new state they show
that we can deliver e and

that now, the new state will
still be bivalent!

S’’
*

e

85

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S’
*

Notice that we made the
system do some work and
yet it ended up back in an

“uncertain” state. We can do
this again and again

S’’
*

e

86

Core of the FLP result in words

‣  In an initially bivalent state, they look at some execution
that would lead to a decision state, say “0”.
‣  At some step this run switches from bivalent to univalent, when

some process receives some message m.

‣  They now explore executions in which m is delayed.

87

Core of FLP result

‣  So:
‣  Initially in a bivalent state.
‣  Delivery of m would make us univalent but we delay m.
‣  They show that if the protocol is fault-tolerant there must be a run

that leads to the other univalent state.
‣  And they show that you can deliver m in this run without a

decision being made.

‣  This proves the result: they show that a bivalent system
can be forced to do some work and yet remain in a
bivalent state.
‣  If this is true once, it is true as often as we like.
‣  In effect: we can delay decisions indefinitely.

88

But how did they “really” do it?

‣  Our picture just gives the basic idea.

‣  Their proof actually proves that there is a way to force the
execution to follow this tortured path.

‣  But the result is very theoretical.
‣  For details: Michael J. Fischer, Nancy A. Lynch and Michael S.

Paterson, Impossibility of Distributed Consensus with One Faulty
Process, Journal of the ACM, April 1985, 32(2):374-382.

‣  So we will skip the real details.

89

Intuition behind this result?

‣  Think of a real system trying to agree on something in
which process p plays a key role.

‣  But the system is fault-tolerant: if p crashes it adapts and
moves on.

‣  Their proof “tricks” the system into treating p as if it had
failed, but then lets p resume execution and “rejoin”.

‣  This takes time… and no real progress occurs.

90

But what did “impossibility” mean?

‣  In formal proofs, an algorithm is totally correct if
‣  It computes the right thing,
‣  And it always terminates.

‣  When we say something is possible, we mean “there is a
totally correct algorithm” solving the problem.

‣  FLP proves that any fault-tolerant algorithm solving
consensus has runs that never terminate.
‣  These runs are extremely unlikely (“probability zero”).
‣  Yet they imply that we can not find a totally correct solution.
‣  And so “consensus is impossible” (“not always possible”).

91

Recap

‣  We have an asynchronous model with crash failures.
‣  A bit like the real world!

‣  In this model we know how to do some things.
‣  Tracking “happens before” & making a consistent snapshot.

‣  But now we also know that there will always be scenarios
in which our solutions can not make progress.

‣  Often can engineer system to make them extremely unlikely.

‣  Impossibility does not mean these solutions are wrong – only that
they live within this limit.

92

Tougher failure models

‣  We have focused on crash failures.
‣  In the synchronous model these look like a “farewell cruel world”

message.

‣  Some call it the “failstop model”. A faulty process is viewed as
first saying goodbye, then crashing

‣  What about tougher kinds of failures?
‣  Corrupted messages;

‣  Processes that do not follow the algorithm, and

‣  Malicious processes out to cause havoc?

93

Here the situation is much harder

‣  Generally we need at least 3f+1 processes in a system to
tolerate f Byzantine failures.
‣  For example, to tolerate 1 failure we need 4 or more processes.

‣  We also need f+1 “rounds”.

‣  Let’s see why this happens.

Reaching Agreement in the Presence of Faults.
Leslie Lamport, Marshall Pease and Robert Shostak.
Journal of the Association for Computing Machinery 27, 2 (April 1980).

94

Byzantine scenario
‣  Generals (n of them) surround a city

‣  They communicate by courier

‣  Each has an opinion: “attack” or “wait”
‣  In fact, an attack would succeed: the city will fall.
‣  Waiting will succeed too: the city will surrender.
‣  But if some attack and some wait, disaster ensues

‣  Some Generals (f of them) are traitors… it doesn’t matter
if they attack or wait, but we must prevent them from
disrupting the battle
‣  Traitor can not forge messages from other Generals

95

Byzantine scenario

Attack!

Wait…

Attack!

Attack! $
No, wait!

Surrender!

Wait…

96

A timeline perspective

‣  Suppose that p and q favor attack, r is a traitor and s
and t favor waiting… assume that in a tie vote, we
attack.

p

q

r

s

t

97

A timeline perspective

‣  After first round collected votes are:
‣  {attack, attack, wait, wait, traitor’s-vote}

p

q

r

s

t

98

What can the traitor do?

‣  Add a legitimate vote of “attack.”
‣  Anyone with 3 votes to attack knows the outcome.

‣  Add a legitimate vote of “wait.”
‣  Vote now favors “wait.”

‣  Or send different votes to different folks.

‣  Or do not send a vote, at all, to some.

99

Outcomes?
‣  Traitor simply votes:

‣  Either all see {a,a,a,w,w}.
‣  Or all see {a,a,w,w,w}.

‣  Traitor double-votes.
‣  Some see {a,a,a,w,w} and some {a,a,w,w,w}.

‣  Traitor withholds some vote(s).
‣  Some see {a,a,w,w}, perhaps others see {a,a,a,w,w,} and still

others see {a,a,w,w,w}.

‣  Notice that traitor can not manipulate votes of loyal
Generals!

100

What can we do?

‣  Clearly we can not decide yet; some loyal Generals might
have contradictory data.
‣  In fact if anyone has 3 votes to attack, they can already “decide”.
‣  Similarly, anyone with just 4 votes can decide.
‣  But with 3 votes to “wait” a General is not sure (one could be a

traitor…)

‣  So: in round 2, each sends out “witness” messages: here
is what I saw in round 1:
‣  General Smith sent me: “attack(signed) Smith”

101

Digital signatures

‣  These require a cryptographic system.
‣  For example, RSA.
‣  Each player has a secret (private) key K-1 and a public key K.

‣  She can publish her public key.

‣  RSA gives us a single “encrypt” function:
‣  Encrypt(Encrypt(M,K),K-1) = Encrypt(Encrypt(M,K-1),K) = M.
‣  Encrypt a hash of the message to “sign” it.

102

With such a system
‣  A can send a message to B that only A could have sent,

‣  A just encrypts the body with her private key.

‣  … or one that only B can read,
‣  A encrypts it with B’s public key.

‣  Or can sign it as proof she sent it.
‣  B can recompute the signature and decrypt A’s hashed signature

to see if they match.

‣  These capabilities limit what our traitor can do: he can not
forge or modify a message.

103

A timeline perspective

‣  In second round if the traitor did not behave identically with
all Generals, we can weed out his faulty votes.

p

q

r

s

t

104

A timeline perspective

‣  We attack!

p

q

r

s

t

Attack!!

Attack!!

Attack!!

Attack!!

Damn! They’re on to me

105

Traitor is stymied

‣  Our loyal generals can deduce that the decision was to
attack.

‣  Traitor can not disrupt this…
‣  Either forced to vote legitimately, or is caught.

‣  But costs were steep!

‣  (f+1)*n2 ,messages!

‣  Rounds can also be slow….

‣  “Early stopping” protocols: min(t+2, f+1) rounds; t is true number
of faults.

106

Recent work with the Byzantine model

‣  Focus is typically on using it to secure particularly
sensitive, ultra-critical services.
‣  For example the “certification authority” that hands out keys in a

domain,
‣  Or a database maintaining top-secret data.

‣  Researchers have suggested that for such purposes, a
“Byzantine Quorum” approach can work well.

‣  They are implementing this in real systems by simulating
rounds using various tricks.

107

Byzantine Quorums

‣  Arrange servers into a √n x √n array.
‣  Idea is that any row or column is a quorum.

‣  Then use Byzantine Agreement to access that quorum, doing a
read or a write.

‣  Separately, Castro and Liskov have tackled a related
problem, using BA to secure a file server.
‣  By keeping BA out of the critical path, can avoid most of the delay

BA normally imposes.

108

Split secrets
‣  In fact BA algorithms are just the tip of a broader “coding

theory” iceberg.
‣  One exciting idea is called a “split secret”.

‣  Idea is to spread a secret among n servers so that any k can
reconstruct the secret, but no individual actually has all the bits.

‣  Protocol lets the client obtain the “shares” without the servers
seeing one-another’s messages.

‣  The servers keep but can not read the secret!

‣  Question: In what ways is this better than just encrypting
a secret?

109

How split secrets work

‣  They build on a famous result.
‣  With k+1 distinct points you can uniquely identify an order-k

polynomial.

‣  i.e. 2 points determine a line.

‣  3 points determine a unique quadratic.

‣  The polynomial is the “secret”.

‣  And the servers themselves have the points – the “shares”.

‣  With coding theory the shares are made just redundant enough to
overcome n-k faults.

110

Byzantine Broadcast (BB)

‣  Many classical research results use Byzantine Agreement
to implement a form of fault-tolerant multicast.
‣  To send a message I initiate “agreement” on that message.
‣  We end up agreeing on content and ordering w.r.t. other

messages.

‣  Used as a primitive in many published papers.

111

Pros and cons to BB

‣  On the positive side, the primitive is very powerful.
‣  For example this is the core of the Castro and Liskov technique.

‣  But on the negative side, BB is slow.
‣  we will see ways of doing fault-tolerant multicast that run at

150,000 small messages per second.
‣  BB: more like 5 or 10 per second.

‣  The right choice for infrequent, very sensitive actions…
but wrong if performance matters.

112

Take-aways?
‣  Fault-tolerance matters in many systems

‣  But we need to agree on what a “fault” is.
‣  Extreme models lead to high costs!

‣  Common to reduce fault-tolerance to some form of data
or “state” replication.
‣  In this case fault-tolerance is often provided by some form of

broadcast.
‣  Mechanism for detecting faults is also important in many systems.

‣  Timeout is common… but can behave inconsistently.
‣  “View change” notification is used in some systems. They

typically implement a fault agreement protocol.

