
GFS:
Evolution on Fast-Forward

Kirk McKusick (BSD/BFFs) interviews Sean Quinlan (former GFS tech leader)

CACM: March 2010

Initially

•  Initial conception of Google did not include
new file system

•  No other choice, so GFS born
– Monitoring, error detection, fault tolerance,

auto recovery all part of file system

•  Anticipated throughput requirements
necessitated changing traditional assumption
– I/O operations and block sizes
– Scalability

Decades later

•  Store of data and applications continue to
rely on GFS

•  Adjustments have been made to file system
along the way

Single-master

•  Unorthodox decision to base GFS on single-
master design (1st decision)
– Bandwidth bottleneck, single point of failure

•  Simplified overall problem design
– Central place for replication and garbage

collection

•  Faster roll out
•  BigTable built later is distributed (took many

years)

Original GFS review

•  Chunk – 64 MB
•  Chunk server – multiple ones
•  Single master – meta data
–  Sophisticated chunk placement
–  Minimize involvement in read/write

•  File, chunk namespaces
•  Mapping files to chunks
•  Location of chunk’s replicas

–  Client asks master which chunk to contact for data
–  Logs maintained – record of critical metadata changes

•  Used for recovery
•  Replicated so reliable

Reality

•  Initially assumed hundreds of TB, few M files
•  Once size of underlying storage increased to

PB, and tens PBs, problems arose
– Operations to scan metadata for recoveries scaled

linearly with volume of data

– Amount of work of master and storage grew as well

– Bottleneck for clients even though clients issue few
metadata operations themselves
•  Open causes involvement of master

Problems

•  Master can complete only a few thousand
ops per second

•  MapReduce may have a thousand tasks
wanting to open a number of files

Current Implementation

•  One master per cell

•  Historically, goal of one cell per data center,
but ended up with multi-cell approach
– More than one cell per data center

– Cells across network functions as related but
distinct file systems

Current Implementation

•  Put multiple GFS masters on top of pool of
chunkservers
–  Could be configured to have multiple GFS masters

•  Gives a pool of underlying storage
–  Application responsible for partitioning data across those

different cells
–  Assume each application own master (uses one master or

small set of masters)
•  Name Spaces hides all of this from application, static way to

partition namespace
•  Logs Processing System - Once logs exhaust one cell, move to

multiple GFS cells
•  Namespace file describes how log data is partitioned across different

cells

Current Implementation

•  Put effort into tuning master performance

•  Atypical at Google to tune any one
particular binary
– Just get things working reasonably well and then

focus on scalability
– Making master lighter weight – paid off

•  When scaled from 1Ks operations to 10Ks
operations, master became bottleneck

Reflections

•  GFS ready for production in record time, team of 3
responsible, readied for deployment in less than a
year

•  Assume GFS is largest file system in operation
•  Google quickly surpasses could orders magnitude of

growth
•  Original consumer of GFS was large crawling and

indexing system
•  Second wave used GFS to store large data sets
•  GFS adjusted to accommodate new use cases
•  Applications also developed with GFS in mind

Additional problems

•  With rapid growth, 64MB chunk size not as
great
– Large size
– Many files need less than 64 MB (Gmail)

•  File counts also a problem
– Number of logs increases

•  Front end server would write logs
•  Front end crashes, more logs written

– More data than had anticipated

Additional Improvements

•  File count growth a problem
•  Only a finite number of files can accommodate before

master runs out of memory
•  Need metadata about each file stored in memory
–  Stores file identity and chunks
•  If average file size below 64MB, ratio of number of

objects on master to storage decreases
–  To deal with this
•  Combine objects into larger files, create table of

contents for it
•  Put quotas on file counts and storage space
– Limit people run into is usually file count quota

Additional Improvements

•  Working on whole new design
– Distributed multimaster model

– New file size of 1MB

• Helps file count

• Reading 10,000 10KB more seek time than
100 1MB files

• 100M files per master, 100s masters

BigTable

•  Distributed storage system for structured data
– Remedy for file-count – aggregate small things
–  Scales to PB across thousands of machines
– Built on GFS, runs on GFS, designed to be

consistent with GFS principles
– While seen as application, really an infrastructure

piece
•  Very failure-aware system
•  Used for crawling and indexing systems
•  Any app with lots of small data items use BigTable
•  BigTable intended for more than just dealing with file

count problem

BigTable

•  Original idea to have only2 basic structures
–  SSTables – Stored String Tables (key-value pair)

– Logs

•  BigTable built on top of logs (mutable ‘stuff ’)
and SSTables (immutable) – data compacted

•  People are free to write any sort of data they
like, but majority use these 2 data structures of
BigTable, SSTables
– Provide compression and checksums

More initial GFS limitations/
improvements

•  Initial GFS design for high bandwidth
(throughput) over low latency
–  Single point of failure OK for batch applications
– Not good for video serving
– Example

•  Write in triplicate to file. If chunkserver dies or hiccups,
replicate one of the chunks – 10 seconds to a minute for
recovery

•  OK if large MapReduce operations, but if Gmail, 1
minute delay not acceptable

•  Initial master failover required minutes, now down to tens
of seconds

More initial GFS limitations/
improvements

•  Moved from MapReduce-based world to interactive
world relying on things such as BigTable (Gmail)

•  Trying to build interactive DB on top of file system
designed for batch-oriented ops is challenge

•  Do things such as:
–  Bigtable – transaction log is bottleneck

•  Open 2 logs at a time, write to one, if gets stuck write to the
other, merge when done

–  Gmail is multihomed
•  If one instance of Gmail account stuck, moved to another data

center (also helps availability)

More initial GFS limitations/
improvements

•  Compatibility issues:
– Mismatches between drivers and drives caused

corrupt data (didn’t support all IDE protocol
versions)
•  Rigorous end-to-end checksumming

•  But – reading slightly stale data OK
– Could have remedied this by adding more data into master

and maintain more state

•  Designers making decisions owned file system and
also applications intended to run on file system

More initial GFS limitations/
improvements

•  Consistency Issues
–  Can obtain different data if read given file multiple times

– Some at Google see this as a problem
•  Can miss append after open file

–  GFS required everything be written to all replicas before
can continue, problems if client crashes
•  Have tightened window for eventual consistency

–  RecordAppend, multiple writers can append to a log,
“loose consistency”
•  No guarantees every replica written, data could be written more

than once in a chunk, in different order on different chunks, etc.
–  If a problem, new primary picks new offset

•  Not expectation of file
•  Loose consistency turned out to “be more painful than it was

worth”
•  Need single writer per file, serialize writes through single

process for consistency

Initial GFS aspect that still works

–  Snapshot of chunk
•  For replacing replica (recovery)

– Revoke lock so client can’t write (affects latency)
•  Also support snapshot feature of GFS – clone

– Not used widely even though very powerful

– Difficult to implement, but tried to do it as true
snapshot (unlike many other early decisions)

Conclusions

•  GFS report card is positive 10 years later
•  Can’t argue with success, staying power
•  Scale and application mix beyond anything imagined

in late 1990s
•  Challenges
–  Supporting user-facing, latency sensitive applications on

top of system designed for batch-system throughput
–  BigTable helped, but not a great fit for GFS

•  Makes bottleneck limitations more apparent

•  Designing new distributed master system to take full
advantage of BigTable

