GFS:
Evolution on Fast-Forward

Kirk McKusick (BSD/BFFs) interviews Sean Quinlan (former GFS tech leader)

CACM: March 2010

Initially

 Initial conception of Google did not include
new file system
* No other choice, so GFS born

— Monitoring, error detection, fault tolerance,
auto recovery all part of file system

* Anticipated throughput requirements
necessitated changing traditional assumption
— I/0 operations and block sizes
— Scalability

Decades later

» Store of data and applications continue to
rely on GFS

* Adjustments have been made to file system
along the way

Single-master

Unorthodox decision to base GFS on single-
master design (15t decision)

— Bandwidth bottleneck, single point of failure

Simplified overall problem design

— Central place for replication and garbage
collection

Faster roll out

BigTable built later 1s distributed (took many
years)

Original GFS review

 Chunk-64 MB
* Chunk server — multiple ones

» Single master — meta data
— Sophisticated chunk placement

— Minimize involvement in read/write
 File, chunk namespaces
* Mapping files to chunks
* Location of chunk’s replicas

— Client asks master which chunk to contact for data
— Logs maintained — record of critical metadata changes

» Used for recovery
* Replicated so reliable

Application !
PP (file name, chunk index) | GFS master o [foolbar
GFS client [File namespace chunk 2ef0
(c:]wnt Pand!c. J
chunk locations) ’
Legend:
mmm) Data messages
] }) — —
Instructions to chunkserver Control messages
Chunkserver state
(chunk handle, byte range) | -
GFS chunkserver GFS chunkserver
chunk data . - e
Linux file system Linux file system

5~ Blba-

Figure 1: GFS Architecture

Reality

* Initially assumed hundreds of TB, few M files

* Once size of underlying storage increased to
PB, and tens PBs, problems arose

— Operations to scan metadata for recoveries scaled
linearly with volume of data

— Amount of work of master and storage grew as well

— Bottleneck for clients even though clients 1ssue few
metadata operations themselves

* Open causes involvement of master

Problems

* Master can complete only a few thousand
ops per second

 MapReduce may have a thousand tasks
wanting to open a number of files

Current Implementation

* One master per cell

» Historically, goal of one cell per data center,
but ended up with multi-cell approach

— More than one cell per data center

— Cells across network functions as related but
distinct file systems

Current Implementation

* Put multiple GFS masters on top of pool of
chunkservers

— Could be configured to have multiple GFS masters
* Gives a pool of underlying storage

— Application responsible for partitioning data across those
different cells

— Assume each application own master (uses one master or
small set of masters)

* Name Spaces hides all of this from application, static way to
partition namespace

* Logs Processing System - Once logs exhaust one cell, move to
multiple GFS cells

* Namespace file describes how log data is partitioned across different
cells

Current Implementation

* Put effort into tuning master performance

» Atypical at Google to tune any one
particular binary

— Just get things working reasonably well and then
focus on scalability
— Making master lighter weight — paid off

 When scaled from 1Ks operations to 10Ks
operations, master became bottleneck

Reflections

GFS ready for production in record time, team of 3
responsible, readied for deployment in less than a
year

Assume GFS 1s largest file system 1n operation

Google quickly surpasses could orders magnitude of
growth

Original consumer of GFS was large crawling and
indexing system

Second wave used GFS to store large data sets
GFS adjusted to accommodate new use cases
Applications also developed with GFS 1in mind

Additional problems

* With rapid growth, 64MB chunk size not as
great

— Large size
— Many files need less than 64 MB (Gmail)

* File counts also a problem

— Number of logs increases
* Front end server would write logs
* Front end crashes, more logs written

— More data than had anticipated

Additional Improvements

* File count growth a problem

* Only a finite number of files can accommodate before
master runs out of memory

* Need metadata about each file stored in memory
— Stores file identity and chunks

* If average file size below 64MB, ratio of number of
objects on master to storage decreases

— To deal with this

* Combine objects into larger files, create table of
contents for 1t

* Put quotas on file counts and storage space
— Limit people run into is usually file count quota

Additional Improvements

* Working on whole new design
— Distributed multimaster model
— New file size of 1MB
* Helps file count

* Reading 10,000 10KB more seek time than
100 1MB files

* 100M files per master, 100s masters

BigTable

* Distributed storage system for structured data
— Remedy for file-count — aggregate small things
— Scales to PB across thousands of machines

— Built on GFS, runs on GFS, designed to be
consistent with GFS principles

— While seen as application, really an infrastructure
piece
* Very failure-aware system
» Used for crawling and indexing systems
* Any app with lots of small data items use BigTable

» BigTable intended for more than just dealing with file
count problem

BigTable

* Original 1dea to have only2 basic structures
— SSTables — Stored String Tables (key-value pair)
— Logs

* BigTable built on top of logs (mutable ‘stuft’)
and SSTables (immutable) — data compacted

* People are free to write any sort of data they
like, but majority use these 2 data structures of
BigTable, SSTables

— Provide compression and checksums

More 1nitial GFS limitations/
Improvements

* Initial GFS design for high bandwidth
(throughput) over low latency

— Single point of failure OK for batch applications
— Not good for video serving

— Example

 Write in triplicate to file. If chunkserver dies or hiccups,
replicate one of the chunks — 10 seconds to a minute for
recovery

* OK if large MapReduce operations, but if Gmail, 1
minute delay not acceptable

* Initial master failover required minutes, now down to tens
of seconds

More 1nitial GFS limitations/
Improvements

Moved from MapReduce-based world to interactive
world relying on things such as BigTable (Gmail)

Trying to build interactive DB on top of file system
designed for batch-oriented ops 1s challenge

Do things such as:

— Bigtable — transaction log is bottleneck

* Open 2 logs at a time, write to one, if gets stuck write to the
other, merge when done

— (Gmail 1s multihomed

* If one instance of Gmail account stuck, moved to another data
center (also helps availability)

More 1nitial GFS limitations/
Improvements

* Compatibility issues:

— Mismatches between drivers and drives caused
corrupt data (didn’t support all IDE protocol
Versions)

* Rigorous end-to-end checksumming
* But — reading slightly stale data OK

— Could have remedied this by adding more data into master
and maintain more state

* Designers making decisions owned file system and
also applications intended to run on file system

More 1nitial GFS limitations/
Improvements

* Consistency Issues

— Can obtain different data if read given file multiple times
— Some at Google see this as a problem

* Can miss append after open file

— GFS required everything be written to all replicas before
can continue, problems if client crashes

* Have tightened window for eventual consistency

— RecordAppend, multlple writers can append to a log,
“loose consistency”

* No guarantees every replica written, data could be written more
than once in a chunk, in different order on different chunks, etc.
— If a problem, new primary picks new offset
» Not expectation of file

* Loose consistency turned out to “be more painful than it was
worth”

* Need single writer per file, serialize writes through single
process for consistency

Initial GFS aspect that still works

— Snapshot of chunk
» For replacing replica (recovery)
— Revoke lock so client can’t write (affects latency)
 Also support snapshot feature of GFS — clone
— Not used widely even though very powerful

— Difficult to implement, but tried to do it as true
snapshot (unlike many other early decisions)

Conclusions

GFS report card 1s positive 10 years later
Can’t argue with success, staying power

Scale and application mix beyond anything imagined
in late 1990s

Challenges

— Supporting user-facing, latency sensitive applications on
top of system designed for batch-system throughput

— BigTable helped, but not a great fit for GFS
* Makes bottleneck limitations more apparent
Designing new distributed master system to take full
advantage of BigTable

