ASSIGNMENT 6

DUE DATE: NOV 22, 2011

1) Show that a group of order 45 is abelian. Determine the number of isomorphism classes of groups of order 45 .

10 pts
2) Let G be a group of order 80 . Show that in G either a 5 -Sylow subgroup is normal or a 2-Sylow subgroup is normal.

10pts
(Hint: First compute the possible number of 5-Sylow and 2-Sylow subgroups. Study the possible intersections of the Sylow subgroups and show that if there is more than one 5 -Sylow subgroup and 2-Sylow subgroup, taking the unions of all of them and counting the distinct elements in this union gives more elements than the cardinality of G which is a contradiction.)
3) Show that if G is a group of order 385, prove that its 7-Sylow subgroup is contained in the centre. Write down the possible p-Sylow subgroups and the possible numbers of p-Sylow subgroups.

10pts
(Hint: If P_{7} is a 7-Sylow subgroup, then look at the action of G on P_{7} by conjugation and use that the index of the centralizer $C_{G}\left(P_{7}\right)$ should be a subgroup of $\operatorname{Aut}\left(P_{7}\right)$ and examine when this is possible by looking at their cardinalities).
4) Show that if X is a topological space, the set $C(X, \mathbb{R})$ whose elements are continuous functions from X to the set \mathbb{R} of real numbers has a ring structure. Fix a point x in X. Check that the set

$$
I=\{f \in C(X, \mathbb{R}) \text { such that } f(x)=0
$$

is an ideal.
10pts
5) Show that if n is a composite divisor, then the ring \mathbb{Z} / n has zero divisors. Write down the zero divisors in $\mathbb{Z} / 16, \mathbb{Z} / 14$. 10pts
6) Show that the set $\{\mathbb{Z}[\sqrt{-2}]=(a+b \sqrt{-2}) \mid a, b \in \mathbb{Z}\}$ has a ring structure. 10pts

