1 List of problems to consider

1. We say that two primes p, q are twin primes if $|p-q|=2$. For example, 11,13 are twin primes, as are 29,31 . How many primes less than 100 are twins? Less than 200? Are there infinitely many?

Solution: The twin primes less than 100 are $(3,5),(5,7),(11,13),(17,19),(29,31),(41,43)$, $(59,61),(71,73)$. The ones less than 200 , in addition to those less than 100 , are $(101,103)$, $(107,109),(137,139),(149,151),(179,181),(191,193),(197,199)$.
Whether or not there are infinitely many is an open problem, called the Twin Prime conjecture. It is suspected to be true, but not known.
2. Prove or disprove: There do not exist three integers $n, n+2, n+4$, all of which are prime.

Solution: This is false. 3, 5, 7 (i.e. $n=3$) are all prime.
3. Prove or disprove: For every integer n, the integers $2 n$ and $4 n+3$ are relatively prime. [Hint: Remember that if $d \mid a$ and $d \mid b$, then $d \mid(s a+t b)$ for any integers s, t.]

Solution: This is false. If $3 \mid n$, then $3 \mid 2 n$ and $3 \mid(4 n+3)$. For example, if $n=3$ then $2 n=6$ and $4 n+3=15$, and $\operatorname{gcd}(6,15)=3$.
4. Prove or disprove: For every integer n, the integers $2 n+1$ and $3 n+2$ are relatively prime. [Hint: Same as above.]

Solution: This is true. Suppose that $d \mid(2 n+1)$ and that $d \mid(3 n+2)$. Then we have that

$$
\begin{aligned}
& d \mid((3 n+2)-(2 n+1))=n+1 \\
& d \mid(2(2 n+1)-(3 n+2))=n
\end{aligned}
$$

and so $d \mid n$ and $d \mid(n+1)$. From class we know that this implies that $d=1$.
5. Prove or disprove: If p, q are primes with $p, q \geq 5$, then $p^{2}-q^{2}$ is divisible by 24 .

Solution: We first consider what possible remainders primes may have upon division by 24. The only possiblities are, for $p \geq 5$, (easy to check): $5,7,11,13,17,19,23$. If we square each of these and look at the remainder of those upon division by 24 are all 1 ! Thus $p^{2}=24 a+1$ and $q^{2}=24 b+1$, and so $p^{2}-q^{2}=24(a-b)$ as claimed.
6. The greatest common divisor of a, b was defined previously as the... greatest divisor that a and b have in common. Similarly, the least common multiple is defined to be the smallest multiple of both a and b; for example, if $a=4$ and $b=6$, then $\operatorname{gcd}(a, b)=2$ and $l c m(a, b)=12$.
Prove or disprove: For every integers a, b, we have that

$$
\operatorname{lcm}(a, b) g c d(a, b)=a b
$$

[Hint: Look at the fundamental theorem of arithmetic. Can you use that to figure out what $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ are?]

Solution: Write $a=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and $b=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$ (with $a_{i}, b_{i} \geq 0$-this allows us to use the same list of primes for both a and b). Then it is easy to see that

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =p_{1}^{\min \left(a_{1}, b_{1}\right)} \cdots p_{k}^{\min \left(a_{k}, b_{k}\right)} \\
\operatorname{lcm}(a, b) & =p_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots p_{k}^{\max \left(a_{k}, b_{k}\right)}
\end{aligned}
$$

Since $a_{i}+b_{i}=\min \left(a_{i}, b_{i}\right)+\max \left(a_{i}, b_{i}\right)$, the conclusion follows.
7. Show that there are no strictly positive integer solutions to the equation

$$
x^{2}-y^{2}=1
$$

(Hint: Factor the left-hand side). Are there any solutions if we allow x, y to be negative or zero?

Solution: We are trying to solve $(x-y)(x+y)=1$. The only possible solution is $x+y=1=$ $x-y$, or $x+y=-1=x-y$, which has as integer solutions $x= \pm 1, y=0$ or $y= \pm 1, x=0$. But these do not satisfy the given constraint.
8. Find all integer solutions to the equation $x^{2}-y^{2}=10$.

Solution: Similar to before, we factor this as $(x-y)(x+y)=10$. Since 10 has as factorization $1 \cdot 10$ and $2 \cdot 5$, we have the following possibilities for the pair (x, y).

$$
\begin{array}{lr}
(-1,-10) & (-10,-1) \\
(-2,-5) & (-5,-2) \tag{2,5}
\end{array}
$$

We will solve $(x, y)=(1,10)$ and $(x, y)=(2,5)$, as the rest all arise from swapping x and y or by switching signs. In the first case, we have

$$
\begin{aligned}
& x+y=1 \\
& x-y=10
\end{aligned}
$$

which yields that $2 x=11$, which has no integer solutions. So this cannot happen. In the second we have

$$
\begin{aligned}
& x+y=2 \\
& x-y=5
\end{aligned}
$$

which yields that $2 x=7$ which also has no integer solutions. So there are no integer solutions to the equation $x^{2}-y^{2}=10$.
9. Prove or disprove that every even number greater than 2 can be written as a sum of two primes.

Solution: This is called Goldbach's conjecture, and it is also a famous open problem.
10. Show that there are no rational roots to the cubic equation $x^{3}+x+1=0$. (Hint: What would happen if you assumed there was, and cleared denominators? What can we say about the parity [evenness or oddness] of the result?)

Solution: Suppose that there were a rational root $x=\frac{p}{q}($ with $\operatorname{gcd}(p, q)=1)$ to this equation. That is,

$$
\frac{p^{3}}{q^{3}}+\frac{p}{q}+1=0
$$

or

$$
p^{3}+p q^{2}+q^{3}=0
$$

for some integers p, q with $q \neq 0$. If p, q are odd, then $p^{3}, p q^{2}$, and q^{3} are odd. But then their sum would be odd, which is a contradiction.
If p were even, and q odd, then p^{3} and $p q^{2}$ are even, but q^{3} is odd, which is also a contradiction. A similar result occurs if p is odd and q is even.
11. We say that an integer a has an inverse $\bmod b$ if there is some other integer c such that

$$
[a]_{b}[c]_{b}=[1]_{b}
$$

What conditions are there on a and b such that we can find such an inverse? [Hint: Look at the Euclidean algorithm]

Solution: The exact conditions are that $\operatorname{gcd}(a, b)=1$. In that case, we can write

$$
a c+b d=1
$$

for some integers c, d, and so reduction $\bmod b$ yields that this is equivalent to

$$
[a]_{b}[c]_{b}=\underbrace{[b]_{b}}_{=[0]_{b}}[d]_{b}=[1]_{b}
$$

as claimed. Conversely, if we can write $[a]_{b}[c]_{b}=[1]_{b}$ that we can write 1 as a linear combination of a and b, which implies that $\operatorname{gcd}(a, b)=1$.
12. We say that a number is perfect if the sum of its proper divisors is itself. For example, 6 and 28 are perfect, since $1+2+3=6$, and $1+2+4+7+14=28$. Prove the following: If $2^{p}-1$ is prime, then $2^{p-1}\left(2^{p}-1\right)$ is perfect. Is the converse true?

