# Science:Math Exam Resources/Courses/MATH101/April 2012/Question 04 (b)

MATH101 April 2012
Easiness: {{#w4grb_rawrating:Science:Math Exam Resources/Courses/MATH101/April 2012/Question 04 (b)}}/100

Work in progress: this question page is incomplete, there might be mistakes in the material you are seeing here.

•  Q1 (a)  •  Q1 (b)  •  Q1 (c)  •  Q1 (d)  •  Q1 (e)  •  Q1 (f)  •  Q1 (g)  •  Q1 (h)  •  Q1 (i)  •  Q1 (j)  •  Q2 (a)  •  Q2 (b)  •  Q3 (a)  •  Q3 (b)  •  Q3 (c)  •  Q3 (d)  •  Q4 (a)  •  Q4 (c)  •  Q5  •  Q6  •  Q7 (a)  •  Q7 (b)  •  Q7 (c)  •  Q8 (a)  •  Q8 (b)  •
Other MATH101 Exams
 ' '

### Question 04 (b)

Determine, with explanation, whether the series

${\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}(2n)!}{(n^{2}+1)(n!)^{2}}}}$

converges absolutely, converges conditionally, or diverges.

 Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? If you are stuck, check the hints below. Read the first one and consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it! If after a while you are still stuck, go for the next hint.