Difference between revisions of "Science:Math Exam Resources/Courses/MATH152/April 2015/Question B 2 (a)/Hint 1"

From UBC Wiki
Jump to: navigation, search
Line 1: Line 1:
Recall the definition of eigenvector. The corresponding eigenvector with respect to  eigenvalue <math display="inline">\lambda</math> satisfies the equation <math display="inline">Ax=\lambda x</math>. Note it is equivalent to solve  <math display="inline">x</math> in <math display="inline">(A-\lambda I)x=0</math>.
Recall that an '''eigenvector''' <math>\mathbf{x}</math> of an eigenvalue <math>\lambda</math> satisfies the equation <math display="inline">A\mathbf{x}=\lambda \mathbf{x}</math>, or equivalently,
<math display="inline">(A-\lambda I)\mathbf{x}=\mathbf{0}</math>.

Latest revision as of 20:29, 8 March 2018

Recall that an eigenvector of an eigenvalue satisfies the equation , or equivalently, .