# Difference between revisions of "Science:Math Exam Resources/Courses/MATH105/April 2017/Question 01 (h)/Solution 1"

From UBC Wiki

(2 intermediate revisions by 2 users not shown) | |||

Line 1: | Line 1: | ||

− | We use the substitution <math> u = \arcsin y, v = y</math>, then <math> u^{\prime}=\frac{1}{\sqrt{1-y^2}}, v^{\prime}=1.</math> | + | We use the substitution <math> u = \arcsin y, v = y</math>, then <math> u^{\prime}=\frac{1}{\sqrt{1-y^2}}, v^{\prime}=1.</math> |

− | + | ||

− | + | Then using integration by parts we have | |

− | Thus the answer is <math>\color{blue} y\arcsin y+\sqrt{1-y^2}+C </math> | + | <math>\int \arcsin y dy=y\arcsin y -\int \frac{y}{\sqrt{1-y^2}}dy</math>. |

+ | |||

+ | The second integral on the right can be evaluated as <math> \int \frac{y}{\sqrt{1-y^2}}dy= -\sqrt{1-y^2}+C </math> for some constant <math>C </math>. | ||

+ | |||

+ | Thus the answer is <math>\color{blue} y\arcsin y+\sqrt{1-y^2}+C , \text{ where } C \text{ is a constant.}</math> |

## Latest revision as of 22:25, 8 March 2018

We use the substitution , then

Then using integration by parts we have .

The second integral on the right can be evaluated as for some constant .

Thus the answer is