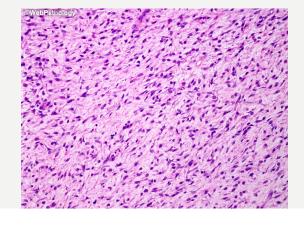
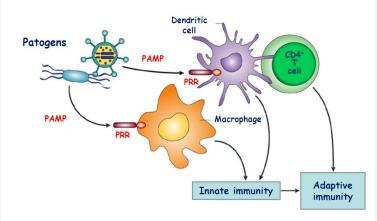
THE IMMUNE RESPONSEQUESTIONS

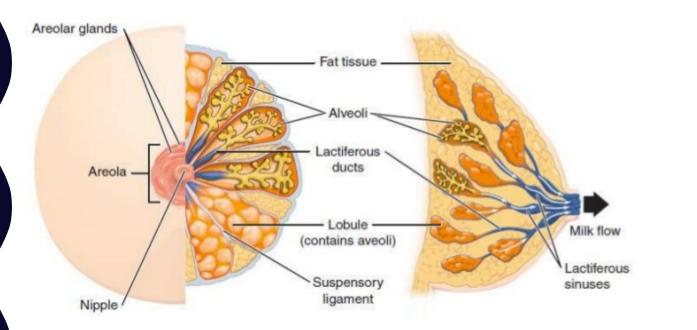
BY STEVEN CHO

THE INNATE IMMUNE SYSTEM


Physical Barrier

Teat Sphincter – tightly closed and blocks entrance Squamous epithelium – plug creation with **keratin**/ also chemically attacks pathogens


PRRs and **PAMPs**


Types of PAMPs – depends on type of bacteria

- Gram negative bacteria TLR4
- Gram positive bacteria TLR 2
- Staphylococcus aureus MBL (Mannose binding lectin), ficolins, and complement molecules

Pathogen recognition in innate immunity

THE INNATE IMMUNE SYSTEM

Mammogenesis

Proliferation of mammary glands – due to increased estrogen

- Increase in interleukin IL-10 and tumor necrosis facter α (TNF α) – upregulates other factors

INFLAMMATION

Eicosanoids, prostaglandin E2, prostaglandin F2 α , are increased during mastitis – induces inflammation

- Increases vaso-permeability – leukocyte recruiting/ Induces fever

Eicosanoids, prostaglandins D2 and I5-Deoxy-Delta-I2, I4-prostaglandin J2 (I5 d-PGJ2) - inhibits inflammation

- Block nuclear factor kappa beta (NFKB) – proinflammatory cytokines (inhibited)

BREAST MILK COMPOSITION

Neutrophils

- First to be recruited by C5a and C3a
- Release defensins, oxygen species, proteases and lysozymes to attack pathogens
- Also take part in increasing inflammation by releasing prostaglandins and leukotrienes

Lymphocytes

- B Cells Antibodies produced by B cells kill and neutralize pathogens
- **T Cells** kills infected cells

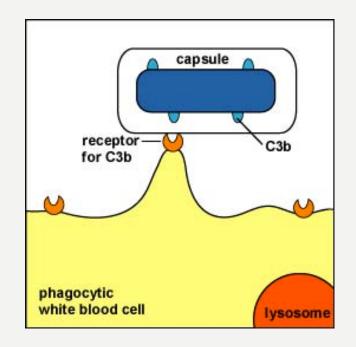
Macrophages

 Phagocytose bacteria and release cytokines to induce inflammation such as TNF- α and II-1 β

Mammary epithelial cells

- Also release TNF- α, II-6, II-8 after bacteria adhesion
- Upregulate cellular adhesion molecules - Eselectin
- ICAM-I intercellular adhesion molecule, and vascular cellular adhesion molecule I – entry of immune cells

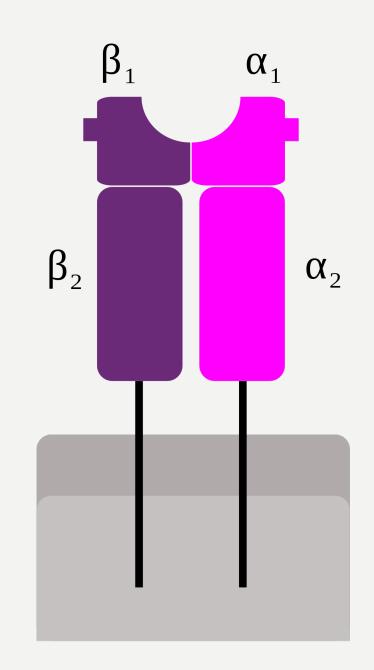

ADDITIONAL INNATE COMPONENTS


Lactoferrin

- Antimicrobial factor in the breast milk increased when pathogen is present
- Will deplete iron source for the bacteria
- Produced by epithelial cells and leukocytes

Complement System

- C3b and C3bi major role in opsonization of the bacteria
- create pores



ADAPTIVE IMMUNE RESPONSE

Major Histocompatibility Complex – specifically MHC II

Activates CD4+ helper cells

- Facilitate B cell differentiation release of II 2
- Activate more CD8+ cytotoxic cells
- Memory B cells
- ThI Switches neutrophils to the IgG2 isotope with enhanced phagocytosis
- Th2 Drive antibody-mediated immunity
- Th17 Produce IL-17, IL-21, IL-22, and IL-26, which recruit neutrophils and form abscesses

HOST DAMAGES

Most damage is done by the Host Immune Response

Macrophages

MI macrophages – Secrete IL-12 and IL-23 to promote an inflammatory Th-1 response

- Can produce reactive oxygen species (ROS) using nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
- Also produces reactive nitrogen species (RNS) using Nitric Oxide Synthase 2 (NOS-2)

Neutrophils

- Elastase (type of protease) – may damage host cell

STAPHYLOCOCCUS AUREUS – EVASION FROM THE INNATE IMMUNE SYSTEM

Staphylococcal superantigen-like proteins

- Slow down clearance and phagocytosis of bacteria
- SSL-7 bind to C5 and IgA

Extracellular adherence protein

- Prevents leukocyte migration – associating with I-CAM-I – prevents neutrophil squeezing through endothelial cells

Aureolysin Cleaves C3 to generate C3a and C3b

Self-protection

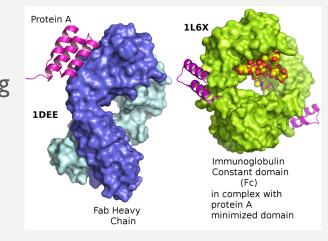
- Express Capsular polysaccharide escape digestion
- Peptidoglycan acetylation and D-alanylation or teichoic acids against lysosome killing
- Siderophores acquire iron from host

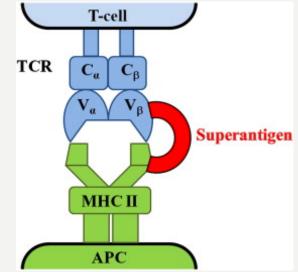
STAPHYLOCOCCUS AUREUS – EVASION FROM THE ADAPTIVE IMMUNE SYSTEM

Manipulate humoral response

Staphylococcal protein A (SpA) – down regulation of receptors

- Binding to the Fcy domain of lgs prevents opsonophagocytic killing
- Binding to the **Fab domain** of Igs clonal activation of B cells

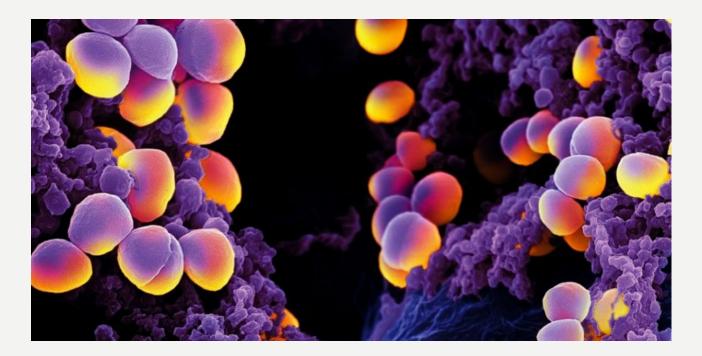

Manipulate T cell response


Secrete superantigens (i.e Toxic shock syndrome toxin and enterotoxins)

- Bypass conventional MHC antigen presenting and processing
 - Promotes Th1 cell proliferation delayed production of antigen specific antibodies.

Virulence factors that promote adherence to host cell

Examples - Fibronectin-binding proteins, collagen-binding proteins, ironregulated surface determinants, ECM-binding proteins, and surface proteins



CLEARANCE OF THE BACTERIA

Most of the time

No need for antibiotics – breast drainage and immune system will suffice

For the case with S. aureus Bacteria may remain causing risks of relapse or chronic mastitis Results in subclinical mastitis and chronic infection

STAPHYLOCOCCUS AUREUS AND IT'S PERSISTANCE

Induction of a weak immune response

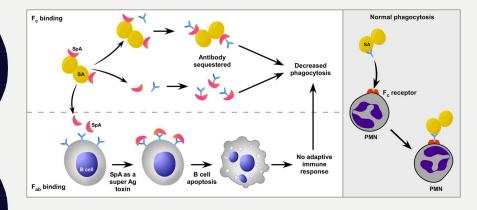
 Less NF-kB signaling and a delayed secretion of inflammatory cytokines like TNF-α – establish colonies or biofilms that resist

Increased expression of Immune dampeners

- Transforming Growth Factor Beta I (TGFBI) and IL-10

Small colony variants (SCV)

- Deficient metabolic pathways more persistence and can more readily avoid of immune cells less immune response
- May be able to switch back and forth/ may also avoid antibiotics


Intracellular surviving

- Help them avoid antibody mediated immune responses

Loss of capsular polysaccharide expression

- Greater persistence in the mammary glands by avoiding immune clearance **neutrophil and leukocyte** infiltration

RECOVERY AND IMMUNITY

Following the infection

- IgG and IgA subsequently follows after the infection
- Clearance is mostly done by the the **host immune syst**em/ rarely usage of antibiotics
- Relapse may occur (Intracellular S. aureus)

Prevention

- Breastfeeding technique - also helps for recovery and prevention of milk stasis

Immunity?

- Immunity is not well formed – **SpA** decreases long lived **plasma cells** and binds to **B cells** and **down regulates** them.