

1. Symmetry, Group Theory, and Electronic Structure

2. Ground State Spectroscopic Methods

- **2.1 Nuclear Magnetic Resonance**
- 2.2 Electron Paramagnetic Resonance
- 2.3 Mössbauer Spectroscopy

3. Excited State Spectroscopic Methods

4. Other Physical Methods

The Zeeman effect... the foundation of magnetic resonance

- effect of magnetic field (*B*) on isolated nucleus with *I* > 0?
 - nuclear spin (angular momentum) states will split (e.g. *I* = 3/2)
 - energy splitting of the nuclear wavefunction is determined by *nuclear Zeeman Hamiltonian*

$$H'_{nZ} = -\vec{\mu}_I \cdot \vec{B} = -\hbar\gamma \vec{I} \cdot \vec{B}$$

 $\vec{\mu}$ = nuclear magnetic moment \vec{B} = magnetic field vector γ = gyromagnetic ratio \vec{I} = nuclear spin vector

$$egin{aligned} E_{Zeeman} &= -\gamma \hbar \left| ec{B}
ight| \cdot \left\langle \Psi_{I} \left| ec{I}
ight| \Psi_{I}
ight
angle \ &= -\gamma \hbar B_{0} m_{I} \end{aligned}$$

 for electric dipole allowed transition in spherical symmetry:

NMR selection rule $\mapsto \Delta m_I = \pm 1$

 $I = \frac{3}{2}$ gives $2(\frac{3}{2}) + 1 = 4$ levels

$$m_I = +\frac{3}{2}, +\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}$$

Classical Model for Nuclear Zeeman Effect

- classical magnetic moment (μ) precesses (rotates) about the axis of external magnetic field (B_0) $\rightarrow \vec{\mu}_I \cdot \vec{B}_0$
- Larmor precession with frequency:

$$u_0 = rac{\gamma}{2\pi} B_0 \ or \ \omega_0 = \gamma B_0$$

- cone angle depends on μ , which depends on m_{μ}
 - 2/+1 different values $\cos \theta = \frac{m_I}{\sqrt{I(I+1)}}$
- m_l defines magnitude of projection along direction of B_0 (z):

$$\vec{\mu} = \sqrt{I \ I + 1} \gamma \hbar \quad \Rightarrow \quad \mu_z = m_I \gamma \hbar$$

- define *classical* gyromagnetic ratio for any magnetic particle
 - for $e^- \rightarrow$ Bohr magneton $\gamma_e = \mu_B = \frac{e\hbar}{2m_e} = 9.2741 \times 10^{-24} JT^{-1}$
 - for $p^+ \rightarrow$ nuclear magneton $\gamma_H = \mu_N = \frac{e\hbar}{2m_p} = 5.05095 \times 10^{-27} JT^{-1}$
- but γ is more complicated since these are *relativistic quantum particles*
 - Need fudge factor the Lande g-factor such that
 - In NMR, we normally use $\gamma_N \rightarrow$ in EPR everything is discussed in terms of g-values

$$\gamma_N = \frac{g_N}{\hbar} \mu_N$$

- Important properties when considering nuclear spin:
 - Nuclear spin (*I*), magnetic moment (μ), magnetogyric ratio (γ)
 - Natural abundance (C)
 - Relative Receptivity (D^P)
 - relative to ¹³C

$$D^{P} = rac{\left|\gamma_{N}
ight|^{3} C_{N} I_{N}(I_{N}+1)}{\left|\gamma_{P}
ight|^{3} C_{P} I_{P}(I_{P}+1)}$$

Important factors relating to nuclear spin

- Nuclear spin (*I*)
- magnetic moment (μ)
- magnetogyric ratio (γ)
- natural abundance (C)
- relative receptivity (*D*^{*P*})
 - relative to ¹³C

$$D^{P} = \frac{|\gamma_{N}|^{3} C_{N} I_{N} (I_{N} + 1)}{|\gamma_{P}|^{3} C_{P} I_{P} (I_{P} + 1)}$$

Isotope	Spin	% Natural	Magnetic	Magnetogyric	Relative		
		Abundance	Moment	Ratio ($\gamma/10^7$)	Receptivity		
	_		(μ/μ_N)	rad $T^{-1}s^{-1}$	(D^{P})		
е	1/2		-3.184×10^3	-1.761 x 10 ⁴	2.8×10^8		
$^{1}\mathrm{H}$	1/2	99.985	4.83724	26.7510	5.68×10^3		
2 H	1	0.015	1.2126	4.1064	8.21 x 10 ⁻³		
⁶ Li	1	7.42	1.1625	3.9366	3.58		
⁷ Li	3/2	92.58	4.20394	10.396	1.54×10^3		
⁹ Be	3/2	100.0		-3.7954	78.8		
$^{10}\mathbf{B}$	3	19.58	2.0792	2.8748	22.1		
11 B	3/2	80.42	3.408	8.5827	$7.54 \text{ x } 10^2$		
¹³ C	1/2	1.108	1.2166	6.7263	1.000		
14 N	1	99.63	0.57099	1.9324	5.69		
¹⁵ N	1/2	0.37	-0.4903	-2.7107	2.19 x 10 ⁻²		
¹⁷ O	5/2	0.037		-3.6266	6.11 x 10 ⁻²		
¹⁹ F	1/2	100.0	4.5532	25.1665	4.73×10^3		
²⁹ Si	1/2	4.70	-0.96174	-5.3141	2.09		
³¹ P	1/2	100.0	1.9602	10.829	3.77×10^2		
³³ S	3/2	0.76		2.0517	9.73 x 10 ⁻²		
³⁵ Cl	3/2	75.53		2.6212	20.2		
³⁷ Cl	3/2	24.47		2.182	3.77		

Periodic Table of the Elements

lacksquare		NMR active nuclei									He						
Li	Li Be Frequently measured									₿	\bigcirc		0	Ð	Ne		
Na	Mg	Not active nuclei						AI	5	Ð	S	CI	Ar				
к	Ca	Sc	Ti	×	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
RЬ	Sr	Y	Zr	NЬ	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	La	Hf	Ta	w		Os	Ir	Pt	Au	Hg	ті	РЬ	Bi	Po	At	Rn

Energy required to induce nuclear transitions

- Depends on applied magnetic field $(B_0) \rightarrow \Delta E = h\nu = \gamma \hbar \vec{B}_0$
 - In a 2.35T magnetic field, ¹H resonates at 100 MHz \rightarrow ~ 10⁻⁷ eV
 - Spectrometers are discussed based on frequency required to induce ¹H nuclear transition
- Depends on nucleus

300 MHz	7.05 T
400 MHz	9.40 T
500 MHz	11.75 <i>T</i>
800 MHz	18.80 T

MHz

Approaches to Performing NMR Experiments

• Continuous Wave (CW) Experiments \rightarrow traditional approaches

- Pulsed Experiments \rightarrow modern approach
 - use *pulsed* magnetic fields to cause perturbation \rightarrow watch effect over time
 - relies on Fourier methods to transform from time domain to frequency domain
 - use effect of *oscillating magnetic field* to induce transitions $t \ s \rightarrow \nu \ s^{-1}$

Classical Effect of Rotating Field on Larmor Precession

- apply rotating B_1 field \perp to homogeneous B_0 field what happens?
- under most circumstances nothing
 - rotating field does not interact with $~\vec{\mu}$
 - unless @ same frequency
- if B_1 rotates at Larmor frequency (v)
 - rotating field can couple $\vec{\mu}\cdot\vec{B}_1$ with magnetic moment
 - results in force (F) acting to increase $\boldsymbol{\theta}$
 - remember: difference between m_l states in magnetic field is the angle θ with respect to B_0
 - applied to QM: can produce $\Delta m_I \rightarrow$ induces NMR transitions!
- Basic approach used in pulsed techniques (vide infra)

NMR Chemical Shifts

- If $\nu_0 = \frac{\gamma}{2\pi} B_0$ was the whole story, NMR would be pretty much useless
 - could be used for elemental analysis (maybe) but
 - every ¹H nucleus would have same Larmor Frequency \rightarrow at the same energy!
- Fortunately, electronic environment affects response to B_0
 - This effect could be described in two possible ways:
 - different nuclei see different magnetic fields
 - different nuclei have different gyromagnetic ratios

$$\begin{split} \mathbf{v}_{i} &= \frac{\gamma}{2\pi} B_{eff} = \frac{\gamma}{2\pi} B_{0}(1 - \sigma_{i}) \\ \mathbf{s} \quad \nu_{i} &= \frac{\gamma_{eff}}{2\pi} B_{0} = \frac{\gamma_{N}(1 - \sigma_{i})}{2\pi} B_{0} \end{split}$$

- Either way Larmor frequency depends on chemical environment
 - σ_{i} is "shielding constant"
 - usually reported as $\delta_{ppm} \rightarrow$ in *parts per million* from a reference standard

$$\delta_{ppm} = \frac{\nu - \nu_0}{\nu_0} \times 10^6$$

usual way of thinking in NMR

• *e.g.* 115 MHz (8.2T) ¹¹B NMR of B₁₀H₁₄ (¹H decoupled)

- Intensity mechanism exactly the same for all nuclei of same type:
 - sample concentration

$$I \propto \left\langle \Psi ~~ m_{I}^{1} ~~ ert ec{\mu} ert \Psi ~~ m_{I}^{2} ~
ight
angle^{2}$$

- # of nuclei of a particular type
- isotopic distribution
- Chemically identical nuclei are at same position
- But what about interactions with other nuclei?
 - Angular momenta should be able to couple...

Coupling of Angular Momenta \rightarrow Scalar Coupling

- connected angular momenta can couple with each other
 - electron spin with orbital angular momentum (spin-orbit coupling)
 - electron spin with electron spin (magnetic coupling of metal ions)
 - nuclear spin with nuclear spin (scalar coupling)
- coupling is independent of magnetic field
 - strength of coupling is a scalar (α) that $\vec{J}_{12} = \alpha \ \vec{J}_1 \cdot \vec{J}_2 = \alpha \ \vec{J}_2 \cdot \vec{J}_1 = \vec{J}_{21}$
- Consider two nuclei with I₁ and I₂, respectively..

$$H_{sc} = + J_{12} \quad \vec{I}_1 \cdot \vec{I}_2$$

scalar coupling term or J-coupling term

$$\begin{aligned} H_{\vec{I}_{1},\vec{I}_{2}}^{\prime} &= H_{\text{nuclear Zeeman on }\vec{I}_{1}} + H_{\text{nuclear Zeeman on }\vec{I}_{2}} + H_{\text{scalar coupling of }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= -\hbar\gamma \ \vec{B}_{eff} \cdot \vec{I}_{1} \ + -\hbar\gamma \ \vec{B}_{eff} \cdot \vec{I}_{2} \ + J_{12} \ \vec{I}_{1} \cdot \vec{I}_{2} \\ &= -\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{1}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}} + \underbrace{J_{12}m_{I_{1}}m_{I_{2}}}_{\text{scalar coupling of }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{1}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}}_{\text{Zeeman terms}} + \underbrace{J_{12}m_{I_{1}}m_{I_{2}}}_{\text{scalar coupling of }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{1}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}}_{\text{Scalar coupling of }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{1}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}}_{\text{Scalar coupling of }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{1}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}}_{\text{Scalar coupling of }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{1}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}}_{\text{Scalar coupling }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{1}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}}_{\text{Scalar coupling }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{2}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}}}_{\text{Scalar coupling }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{2}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}} \ m_{I_{2}}}_{\text{Scalar coupling }(\vec{I}_{1}\cdot\vec{I}_{2})} \\ &= \underbrace{-\hbar\gamma B_{0} \ 1 - \sigma_{1} \ m_{I_{2}} - \hbar\gamma B_{0} \ 1 - \sigma_{2} \ m_{I_{2}} \ m_$$

- Simplest case: 2 indistinguishable $I = \frac{1}{2}$ nuclei... ($J_{12} > 0$)
 - allowed transitions will be $(m_{I_1}, m_{I_2}) \rightarrow (m'_{I_1}, m'_{I_2})$ where $\Delta m_{I_1} = \pm 1$ or $\Delta m_{I_2} = \pm 1$

- Pauli Exclusion Principle: valid wavefunction must be either symmetric (+1) or antisymmetric (-1) with respect to particle exchange for equivalent particles $\rightarrow huh$? $(+\frac{1}{2},+\frac{1}{2}) \xrightarrow{\text{exchange nuclei}} (+\frac{1}{2},+\frac{1}{2}) \mapsto \text{symmetric}$
 - in our current case
- $(-\frac{1}{2},-\frac{1}{2}) \xrightarrow{\text{exchange nuclei}} (-\frac{1}{2},-\frac{1}{2}) \mapsto \text{symmetric}$ $(+\frac{1}{2},-\frac{1}{2}) \xrightarrow{\text{exchange nuclei}} (-\frac{1}{2},+\frac{1}{2}) \mapsto PEP \text{ violation}$ $\left(-\frac{1}{2},+\frac{1}{2}\right) \xrightarrow{\text{exchange nuclei}} \left(+\frac{1}{2},-\frac{1}{2}\right) \mapsto PEP \ violation$
 - introduce another nomenclature to simplify $\alpha = +\frac{1}{2}$ our life for S = 1/2 systems $\beta = -\frac{1}{2}$ such that $\alpha_1\beta_2 \equiv +\frac{1}{2}, -\frac{1}{2}$
 - the two degenerate configurations must be symmetrized \rightarrow create another set of basis functions... $(\alpha = \frac{1}{2}(\alpha_1\beta_2 + \beta_1\alpha_2) \mapsto \text{symmetric}$

$$\varphi_{s} = \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 - \beta_1 \alpha_2) \mapsto \text{antisymmetric}$$

 $\left\langle \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 + \beta_1 \alpha_2) \Big| \frac{1}{\sqrt{2}} (\beta_1 \alpha_2 + \alpha_1 \beta_2) \right\rangle = \frac{1}{2} \left\langle \alpha_1 \beta_2 \Big| \beta_1 \alpha_2 \right\rangle + \left\langle \alpha_1 \beta_2 \Big| \alpha_1 \beta_2 \right\rangle + \left\langle \beta_1 \alpha_2 \Big| \beta_1 \alpha_2 \right\rangle + \left\langle \beta_1 \alpha_2 \Big| \alpha_1 \beta_2 \right\rangle$ $=\frac{1}{2} 0 + 1 + 1 + 0$ $=1 \mapsto \text{symmetric}$ $\left\langle \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 - \beta_1 \alpha_2) \right| \frac{1}{\sqrt{2}} (\beta_1 \alpha_2 - \alpha_1 \beta_2) \right\rangle = \frac{1}{2} \left\langle \alpha_1 \beta_2 \left| \beta_1 \alpha_2 \right\rangle - \left\langle \alpha_1 \beta_2 \left| \alpha_1 \beta_2 \right\rangle - \left\langle \beta_1 \alpha_2 \left| \beta_1 \alpha_2 \right\rangle + \left\langle \beta_1 \alpha_2 \left| \alpha_1 \beta_2 \right\rangle \right\rangle \right\rangle$ $=\frac{1}{2} 0 - 1 - 1 + 0$ $= -1 \mapsto antisymmetric$

- this causes a few issues...
 - hidden selection rule \rightarrow can't change symmetry
 - the energies we've calculated are wrong

 $\begin{array}{l} \varphi_s^1 = \alpha_1 \alpha_2 \mapsto \text{symmetric} \\ \varphi_{as} = \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 - \beta_1 \alpha_2) \mapsto \text{antisymmetric} \\ \varphi_s^2 = \frac{1}{\sqrt{2}} (\alpha_1 \beta_2 + \beta_1 \alpha_2) \mapsto \text{symmetric} \\ \varphi_s^3 = \beta_1 \beta_2 \mapsto \text{symmetric} \end{array}$

• we get a new (correct) energy level diagram for this special case

- what if the two $I = \frac{1}{2}$ nuclei are different from each other?
 - we don't have to worry about the Pauli Exclusion Principle and all of that... so it's easier! $J_{12} = 0$ $J_{12} > 0$ $J_{12} < 0$

• what about coupling of one $I = \frac{1}{2}$ nucleus (1) to two equivalent $I = \frac{1}{2}$ nuclei (2, 2')?

General Rules about Scalar Coupling (J-Coupling)

- scalar coupling occurs only through atoms connected by chemical bonds
 - involves interactions through the electronic manifold ightarrow no covalency = no scalar coupling
 - can be considered as having three components $(I_1 (e^-) I_2)$
 - efficiency of electronic bridge depends on nature and number of bonds between nuclei as well as specific angles relationship between bonds
 - nuclei are coupled to the electronic bridge through electron density at the nucleus (s-type contributions in the valence orbitals involved in bonding)
- magnitude of scalar coupling also depends on
 - magnitude of magnetic moments involved $ightarrow ~ J_{_{12}} \propto \gamma_{_{I_1}} \cdot \gamma_{_{I_2}}$
 - nature of nuclei has dramatic impact on whether coupling is observed or not
- scalar coupling is independent of magnetic field
 - splitting will always occur at a constant ν not constant $\delta_{\textit{ppm}}$
 - Can be used to differentiate coupling vs. independent signals e.g. doublet signal vs. two singlets
- effects of scalar coupling are additive
 - the effect of J_{12} and J_{13} on I_1 is determined by applying J_{12} followed by J_{13}
 - always easier to start with largest effect and move downwards (start with J_{13} if $J_{13} > J_{12}$)

nucleus	$\gamma (10^7 \ rad \ T^{-1}s^{-1})$
$^{1}\mathrm{H}$	26.751
² H	4.106
¹¹ B	8.583
¹³ C	6.726

• Example: 5 coordinate phosphorus molecule...

Fig. 2.9 ³¹P NMR spectrum of $PF_2H(^{15}NH_2)_2$. It is a doublet (J_{PH}) of triplets (J_{PF}) of iplets (J_{PN}) of quintets $(J_{PH}) - 90$ lines in all.

• Examples of multiplets in ¹H NMR

5

- intensity distributions due to scalar coupling general multiplet patterns
 - depends on number of states involved
 - For coupling of $I = \frac{1}{2}$ nuclei use Pascal's Tri
 - For I > 1/2 nuclei use energy diagrams
 - simple intensity pattern only holds in the weak coupling limit, i.e. $\Delta \nu_{12} \gg J_{12}$
- intensities in strong coupling limit causes roofing of NMR multiplets

Chem 529 (2009-W2)

- roof effect \rightarrow coupled multiplets point to each other
- due to mixing of nuclear states as $|\Delta
 u_{12}| \rightarrow |J_{12}|$
 - intensity gets redistributed between transitions
 - in limit outer peaks disappear and obtain singlet
 - this is exactly the same thing as why coupling is not observed between two magnetically equivalent nuclei

The strong coupling limit

see <u>http://physchem.ox.ac.uk/~hmc/tlab/603/ab2.html</u> for demonstration of effect

UBC

2.1 Nuclear Magnetic Resonance

First Order $|\nu_B - \nu_A| \gg |J|$

Second Order

 $|\nu_B - \nu_A| \sim |J|$

• energy level diagram for simple strongly coupled system

Characteristics of Second Order Spectra

- Peak intensities are not equally distributed
- Position of v is not at centre of multiplets
- Observation of outer lines can be extremely difficult

• Example – using field dependence to determine

First Order and Second Order Spectra \rightarrow Pople Notation

- Each independent chemical shift is designated by a capital letter
 - Choice of letter assignments depends on $\Delta
 u_{\scriptscriptstyle AB}$ vs. $|J_{\scriptscriptstyle AB}|$
- If $\Delta v/J$ is small \rightarrow letters used to designate shifts are close: AB, ABC, ...
 - This represents second order or strongly coupled systems
- If $\Delta v/J$ is large \rightarrow letters used to designate shifts are more distant: AM, AX, ...

Y-CH₂-HC

- This represents first order or weakly coupled systems
- *e.g.* two spins \rightarrow
 - A₂B for strong coupling
 - A₂X for weak coupling
- *e.g.* three spins
 - AMX for completely weak coupling
 - **ABX** if two spins are strongly coupled
 - ABC if all three are strongly coupled

When nuclei have identical chemical shift but different magnetic coupling, prime symbol is used:

AA'BB' or AA'XX'

FIGURE 4.44. Styrene in CDCl3 at 300 MHz.

Chem 529 (2009-W2)

Contributions to Spin-Spin Coupling

- several possible contributions to general spin-spin coupling
 - **Fermi contact (FC)** \rightarrow indirect *I-I* coupling (mediated by ρ_e at nucleus)
 - diamagnetic spin-orbit (DSO) \rightarrow perturbation on filled MOs caused by μ_N

scalar (J)

- paramagnetic spin-orbit (PSO) \rightarrow perturbation on unpaired electrons by μ_{N}
- spin dipolar (SD) → direct *through-space* coupling from *dipole-dipole* interactions
 - in solution usually averages to zero (traceless tensor) even though it may be huge dipolar (D)
 - may be observable in large systems slow rotation, long-range packing
 - RSD (residual spin dipolar coupling) can be used to obtain structural constraints
 - magnitude of coupling can be very large can be a significant issue in solid-state NMR
 - pronounced influence on spin relaxation \rightarrow provides efficient relaxation pathways
- visualization of Fermi Contact coupling
 - through a single bond $\rightarrow {}^{1}J$ is positive
 - through two bonds $\rightarrow {}^{2}J$ is negative (exchange)
 - through three bonds \rightarrow ³*J* is positive

09/03/2010

Spin-spin coupling in paramagnetic complexes

- two important contributions
 - spin-nuclear dipolar coupling \rightarrow through-space coupling of nucleus with e^-
 - Contact shift \rightarrow direct overlap of nuclear and electronic wavefunctions
 - In principle coupling leads to very large J_{Ne} (in the **millions of Hz**)
 - clearly in strong coupling limit such that peak intensities are not equal
 - also leads to very fast paramagnetic relaxation \rightarrow very broad peaks
- Contact shift splitting collapses to intensity-weighted average $\boldsymbol{\nu}$
 - massive shift in δ_{ppm} value $\rightarrow \Delta v$ reflects electron spin density at nucleus

Effect of Coupling to Quadrupolar Nuclei

- Additional complication since nuclei with *I* > ½ also have an electric quadrupole moment (*Q*) in addition to μ.
 - induces loss of spherical symmetry at the nucleus
 - the energetic effect of Q on the nuclear wf is given by

$$E_Q = \left\langle \vec{I}_1 \left| \hat{Q} \right| \vec{I}_1 \right\rangle$$
 where $\hat{Q} = \frac{Q \vec{e} \cdot \vec{V}}{2I_1 \ 2I_1 + 1}$

- interaction depends on electric field vector (V) at the nucleus
- Quadrupole coupling dramatically increases relaxation rate from excited states
 - provides better relaxation pathways \rightarrow broadens peaks
 - averages effect of scalar coupling → as if it doesn't exist!
- Scalar coupling is usually not observed with I > ½ nuclei unless...
 - very high symmetry molecule (electric field gradient = 0 at nucleus)
 - Quadrupole moment is very small \rightarrow coupling to ²H (*I* = 1) is usually observed
- effect of relaxation rates for quadrupolar coupling
 - if relaxation pathways are not very efficient, then scalar coupling is observed
 - however, if relaxation is fast, only average chemical shift position is observed

Net Magnetisation in Homogeneous Magnetic Field (B₀)

- Population of $m_1 = +1/2$ is marginally greater
- All nuclei are in either of the two spin states
- Phase of spins is random...
- Overall effect is small net magnetisation (M₀) along z-axis of the *laboratory frame*

Effect of NMR Transitions on Net Magnetisation...

- Small excess of $m_1 = \alpha$ nuclei are forced into $m_1 = \beta$ state
- changes the net magnetisation vector...
 - *i.e.* "rotation" of M_0 by $\theta = 180^{\circ} (\pi)$

Inversion of spins

• What about 90° rotation ($\pi/2$) of M_0 ?

Equal population of spins

How do we perform modifications of M₀?

• apply additional magnetic field (B₁) along perpendicular axis (y)

• Consider linear oscillation as sum of two circular contributions...

Interaction of B₁ with M₀?

- Remember that vectors composing M_0 are all precessing in the same direction at their Larmor frequency (v_0)
- M_0 will only be affected by component of B_1 that rotates about *z*-axis in same direction as v_0
- Resonance condition (excitation) is obtained when $\omega_0 = v_0$

Important note: only those spins that are in phase with external field (B_1) will be excited...

Effect of pulsed B₁ field...

• Turn on B_1 oscillating field (where $\omega_0 = v_0$) for period τ :

- Rotate net magnetisation into xy plane ($\pi/2$ pulse) due to phasing
- Change relative populations of α and β spin states
- Create excited state population which must relax to ground state (M_0)

Remember: although individual spins are quantized, magnetisation can have many values...

Relaxation of $M_{xy} \rightarrow M_0$

- *M_{xy}* precesses around *z*-axis
- Magnetisation returns to original orientation
- Simplify problem:
 - use *rotating frame of reference*
 - Define new coordinate system (x',y',z) that rotates around static frame of reference (laboratory frame) with angular velocity Ω
 - If $\Omega = \omega_0$ then magnetisation vector doesn't precess!

Magnetic moment as a function of time $(d\mu/dt)$...

• In lab frame:
$$\frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \cdot \vec{B}_0$$
 In rotating frame: $\frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \cdot \vec{B}'$
 $\vec{B}' = \vec{B}_0 - \Omega/\gamma$

- Field looks smaller in rotating frame (precession velocity decreases)
- Addition of B_1 field yields: $\frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \cdot \vec{B}_0 \omega_0 / \gamma + \vec{B}_1$

• Note orientation of contributions...

$$\vec{B}' = B_0 - \omega_0 / \gamma_z + B_{1x}$$

- A strong enough RF pulse can overwhelm B_0
 - as long as it is in phase with rotating frame

Resonance excitation using strong RF pulse: $\Omega = \omega_0 = \nu_0$

- nuclei only 'see' the applied field $B_1 \rightarrow \vec{B}' = B_0 B_0_z + B_1_{x'} = B_1_{x'}$
- Pulse ($t_p \sim 1-50 \mu s$) rotates magnetisation vector in y'z plane
- Rotation angle is defined by pulse width: $\theta = \omega_0 t_p = \gamma B_1 t_p$

Detecting the signal...

- Put 'receiver coil' (detector) along y' axis
- Thus, only component of magnetisation along y' axis will be seen...

 $M_{y'}=M_0\sin \;\omega_0 t_p$

- if t_p is chosen properly, then $\theta = \pi/2$ and $M_{\nu'} = M_0$
- Once pulse is stopped, receiver coil is activated and the signal is seen to decay over time

Relaxation of perturbed magnetisation vector...

- E is not easily dissipated different from most spectroscopies
 - NMR transitions are lowest energy transitions
 - nothing else in proper energy regime
 - rotational/vibrational quenching doesn't really occur
- Relaxation times are therefore very slow ~ *seconds*
 - This means that energy resolution is excellent (remember Heisenberg)

 $\Delta E \Delta t$

Transverse Relaxation \rightarrow represents loss of perturbed signal

• FID of signal occurs because of *dephasing of the magnetic moments*

- Dephasing occurs due to
 - inhomogeneities in the magnetic field (T_{inh})
 - energy level modulations $(T_2) \rightarrow$ time-dependent changes in $\Delta E_{\alpha\beta}$ (vide infra)

• transverse relaxation (continued)

•
$$\frac{dM_{x'}}{dt} = \frac{dM_{y'}}{dt} = -\frac{M_{y'}}{T_2^*}$$
 such that $M_{y'} t = M_{y'} 0 \exp -t/T_2^*$

- Linewidths of signals depend on T_2^* : $\Delta \nu_{1/2} = \frac{1}{\pi T_2^*}$
 - Short lifetime = broad peak
 - Long lifetime = narrow peak

1st order kinetic decay

• T₂* includes inhomogeneous field effects and energy level modulations

•
$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_{inh}}$$

Off-resonance excitation using strong RF pulse: $\Omega = \omega_0 \neq \nu_0$

- RF pulse will still rotate magnetisation vector by angle $\boldsymbol{\theta}$
 - Changes will occur in detection... (let's assume that $\omega_0 > \nu_0$)
 - Magnetization will appear to precess about x'y' plane with an angular velocity of $\Delta v = (\omega_0 v_0)$
 - The signal will oscillate in addition to the FID behaviour: $P = \frac{1}{\Delta \nu} = \frac{1}{\omega_0 \nu_0}$
 - Overall decay constant is still related to T_2^*

Behaviour of sinusoidal decay curve:

•
$$F \ t = M_0 \sin \theta \ \cos \omega t + i \sin \omega t$$
 where $\omega \propto \Delta \nu$
= $M_0 \sin \theta \ e^{i\omega t}$ $\theta = \omega_0 t_p$ = tip angle

 $i\sin\omega t = \text{imaginary part along } x'$

• Include
$$T_2^*$$
 decay term: $F t = M_0 \sin \theta \int_{-\infty}^{+\infty} f(\omega) e^{i\omega t} d\omega$

- Can be solved by expanding as a Fourier Series...
 - Exponential in time domain \rightarrow Lorentzian in frequency domain
 - Use "fast Fourier transform" (FFT) algorithm to get real and imaginary components of spectrum

One-dimensional FT NMR Spectrum (FID Curve)

One-dimensional FT NMR Spectrum (Real Spectrum)

How does magnetisation relax back to ground state?

- earlier picture of relaxation assumes that all relaxation occurs at same rate:
- However, there are two types of relaxation:
 - Transverse relaxation $(T_2^*) \rightarrow \text{along } xy$
 - Field inhomogeneity (*T*_{inh})
 - Time-dependent energy level shifts (T₂)
 - Longitudinal (Spin-Lattice) relaxation $(T_1) \rightarrow \text{along } z$
 - *True* relaxation through spin-flip transitions towards ground state magnetisation

Bloch Equations – Description of Exponential decay to M_o

- Equations to describe relaxation of nuclear spins
- Two basic assumptions:
 - decay process is exponential
 - longitudinal (T_1) and transverse (T_2^*) decay constants are different
- Transverse decay: $\frac{dM_{x'}}{dt} = -\frac{M_{x'}}{T_2^*} \qquad \frac{dM_{y'}}{dt} = -\frac{M_{y'}}{T_2^*}$ Longitudinal decay: $\frac{dM_z}{dt} = -\frac{M_z M_0}{T_1}$
- Equations yield first-order differential rate equations...

• e.g.
$$\ln \left(\frac{M_0 - M_z}{2M_0} \right) = -\frac{t}{T_1} \quad \begin{array}{l} \text{for inversion-recovery:} \ M_z = -M_0 \ at \ t = 0 \\ \text{can get } \mathcal{T}_1 \text{ from this...} \end{array}$$

Origins of T₁ Relaxation Processes

- Dipole-dipole interactions (DD)
 - interactions with other spin active nuclei while tumbling in solution
- Shielding anisotropy (SA)
 - Molecular motion (translation) modulates local magnetic fields (in large B_0)
- Spin-Rotation interactions (SR)
 - Coupling with rotational motion (for equivalent nuclei, e.g. –CF₃)
- Scalar Coupling interactions (SC)
 - Time-dependent coupling with other nuclear spins
- Unpaired electron interactions (UE)
 - Interaction with electron spin (remember that μ_{B} is huge!)
- Quadrupolar interactions (Q)
 - Additional contributions to DD interactions for nuclei with $I > \frac{1}{2}$

$$\frac{1}{T_1} = \frac{1}{T_1^{DD}} + \frac{1}{T_1^{SA}} + \frac{1}{T_1^{SR}} + \frac{1}{T_1^{SC}} + \frac{1}{T_1^{UE}} + \frac{1}{T_1^Q}$$

Chem 529 (2009-W2)

Origins of T₂ **Relaxation Processes**

- List of contributors is similar to T_1 contributions...
- Magnitude of T_2 directly reflected by peak width in spectra
- not as dependent on B_0
- For more details, see:
 - Sudmeier, J.L.; Anderson, S.L.; Frye J.S. Concepts in Magnetic Resonance, **1990**, 2, 197-212.

Relative values of T_1 and T_2 ?

- General rule: $T_1 > T_2$
- why? dephasing must be complete before achieving equilibrium!

Standard One-Dimensional NMR Experiments

- **D1** must be long enough for system to completely relax back to ground state
 - $5T_1$ is usually reasonable
 - often times, much shorter D1 are used...
- duration of pulse used for RF excitation (P1)
- short dead time (DE) is needed to minimise electronic noise in the data
 - due to the RF coils they don't turn off instantaneously
- acquisition time (AQ) must be long enough to obtain good statistics for FFT procedure
- one of the biggest questions: how long should P1 be?

Effect of Pulse Width (t_p, P1) on 1D NMR Spectrum

- Spectra of ethyl benzene using single pulse experiments with differing P1 values →
 - π/2 pulse gives best signal/noise but relaxation time is very long
 - π/3 and π/6 pulses give good data with shorter relaxation times
 - $\pi/18$ pulse gives poor signal/noise
- using a $\pi/2$ pulse gives best data $\frac{\pi}{6}$ per scan but at the expense of the number of scans...
 - intermediate pulse widths are often more efficient

Decoupling Experiments

- In many cases, it is useful to somehow 'turn off' scalar coupling
- Two general approaches -
 - Broadband: remove all coupling to other nuclei (*e.g.* ¹H decoupling)
 - Selective: decouple only specific nuclei
- Basic strategy
 - third magnetic field (B_2) causes *powerful* and *continuous* RF excitation of nuclei
 - cause rapid excitation/de-excitation of spins \rightarrow rapid stimulated relaxation
 - effect on other nuclei is that the decoupled nuclei are effectively "invisible"
 - Nuclei are thus decoupled
- Additional effects
 - in some cases (with positive NOE effect, *vide infra*), NMR signal is enhanced due to decoupling
 - e,g, ¹H decoupled ¹³C NMR is significantly more sensitive

Example of ¹H broadband decoupling

 $[P(OCH_3)_3]$

The Nuclear Overhauser Effect (NOE)

- from dipole-dipole relaxation between two nuclei
 - Spin Dipolar Relaxation, D
 - do not need scalar coupling! $(J_{12} \text{ can be equal to zero})$
- transition intensities depend on population differences

The Nuclear Overhauser Effect (NOE) – Bloch Equations

- most important thing that happens is change in relaxation rates for both of the resultant states of the I₁ nuclear transitions.
- e.g. consider the effect of saturating the ¹H signal (using B_2) during a ¹³C experiment

$$\begin{split} \frac{dM_z(H)}{dt} &= -\frac{M_z(H) - M_0(H)}{T_{1(HH)}} - \frac{M_z(C) - M_0(C)}{T_{1(CH)}} \\ \frac{dM_z(C)}{dt} &= -\frac{M_z(C) - M_0(C)}{T_{1(CC)}} - \frac{M_z(H) - M_0(H)}{T_{1(CH)}} \end{split}$$

under standard conditions

$$\begin{split} \frac{dM_z(H)}{dt} &= -\frac{0 - M_0(H)}{T_{1(HH)}} - \frac{M_z(C) - M_0(C)}{T_{1(CH)}} \\ \frac{dM_z(C)}{dt} &= -\frac{M_z(C) - M_0(C)}{T_{1(CC)}} - \frac{0 - M_0(H)}{T_{1(CH)}} \end{split} \text{ with 1H saturation $\rightarrow M_z(H) = 0$} \end{split}$$

• let system equilibrate to $\frac{dM_z(C)}{dt} = 0$

$$\begin{split} \frac{dM_z(C)}{dt} &= -\frac{M_z(C) - M_0(C)}{T_{1(CC)}} + \frac{M_0(H)}{T_{1(CH)}} = 0 \qquad \frac{M_0(H)}{T_{1(CH)}} = \frac{M_z(C) - M_0(C)}{T_{1(CC)}} \\ & \\ \hline M_z(C) &= M_0(C) + \frac{M_0(H)T_{1(CC)}}{T_{1(CH)}} \end{split}$$

- ¹³C signal depends on initial magnetization of ¹H vectors
- ¹³C signal depends on ratio of CC and CH relaxation rates
- relaxation rates are dependent on $\gamma_{I_1}\gamma_{I_2} \rightarrow \text{NOE} \propto \frac{\gamma_C \gamma_C}{\gamma_C \gamma_H} = \frac{\gamma_C}{\gamma_H}$ or more generally $\frac{\gamma_{I_1}}{\gamma_I}$
- since dipolar coupling is major contributor...
 - NOE also depends on rotational correlation time (τ_c) \rightarrow relative orientations vs. B_{eff}
 - For molecules rotating quickly $\rightarrow positive$ NOE enhancement
 - For molecules rotating slowly \rightarrow *negative* NOE enhancement
 - through-space dipole-dipole interactions drop off as $1/r^6$
 - Only close contacts (< 5Å) will be observable (useful way to get structural information)

- Can do either 1D NOE experiments or 2D NOESY/ROESY
- 1D NOE experiments are basically decoupling experiments!!!
 - ¹H decoupled ¹³C NMR is far more sensitive than normal ¹³C due to NOE

 $\gamma_{^{1}\mathrm{H}}/\gamma_{^{13}\mathrm{C}} \approx 4$

- Selective 1D NOE can be used to specifically evaluate dipolar coupling...
 - Defocus a particular nucleus (specific B₂ pulse)
 - Evaluate effect on intensity of all other peaks
 - Any enhancements due to NOE indicate dipolar interactions (close proximity)

Measurement of T₁ by the Inversion Recovery Method

Measurement of T₁ by the Inversion Recovery Method

Measurement of T₂ by Spin-Echo Pulse Sequence

- M_y after spin echo < M_y before...
- Change delay time (τ)
- Decay of M_v signal with respect to $\tau \rightarrow T_2$
 - *T_{inh}* is removed due to refocusing effect of spin echo pulse
 - Direct measure of T_2 (and not T_2^*)
 - Removes *T_{inh}* contribution to peak width as well!
 - Removes phase shift problem? (not really)

Effect of J-coupling during Spin Echo Experiment

- Remember: *chemical shift* position (v_0) will refocus after (2τ)
 - But J-coupling affects precession, and therefore $\theta = J_{12}\pi\tau$ affects dephasing during τ time period...
 - The influence of J also depends on the spin state of the nucleus 2...
 - Direction of rotation depends on I_2
 - At τ=1/(2J), the terms cancel...
 (can be used to get J)
 - If we use decoupling, then J-coupling information is lost (converts doublet to singlet)

Correlation Spectroscopy (COSY)

- Use two dimensions to determine relationship between peaks...
- If homonuclear I₁ and I₂ are scalar coupled then cross-peaks will occur from the following pulse sequence... (*how*?)

2.1 Nuclear Magnetic Resonance

Insensitive Nuclei Enhanced by Polarization Transfer (INEPT)

- Effect of pulse sequence is to dramatically modify spin populations such that transitions for "insensitive" nucleus (¹³C) are dramatically enhanced
- This is done by population inversion...

2.1 Nuclear Magnetic Resonance

2.1 Nuclear Magnetic Resonance

Other pulse sequences...

 Each uses complex pulse sequences to modify Boltzmann populations of states in order to emphasize and/or determine magnitude of coupling between different nuclei (either J-coupling and/or dipole coupling)

Effect of Chemical Processes on NMR parameters...

- Assumed time-independent nuclei (nothing happening to them!)
- never actually true but often a reasonable assumption
- Other situations require more detailed investigation (chemical exchange, reactivity, *etc.*)
- Chemical exchange processes

• Example: *N*,*N*-dimethylformamide – rotation about C-N amide bond

• The fact that we can see both peaks indicates that exchange process is relatively slow – but compared to what?

$$rate \gg \frac{1}{\frac{\delta_A - \delta_B}{\delta_A - \delta_B}} = \frac{1}{\Delta \delta}$$

• if we increase the temperature to increase the rate of exchange...

- coalescence T therefore allows calculation of exchange thermodynamics
- window for NMR evaluation of dynamic processes is 10⁻² to 10⁸ s⁻¹ (huge)