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The Zeeman effect... the foundation of magnetic resonance

• effect of magnetic field (B) on isolated nucleus with I > 0?

• nuclear spin (angular momentum) states will split (e.g. I = 3/2)

• energy splitting of the nuclear wavefunction is 
determined by nuclear Zeeman Hamiltonian

• for electric dipole allowed transition in 
spherical symmetry:
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Classical Model for Nuclear Zeeman Effect

• classical magnetic moment (μ) precesses (rotates) about 
the axis of external magnetic field (B0) 

• Larmor precession with frequency:

• cone angle depends on μ, which depends on mI

• 2I+1 different values

• also depends on 

• mI defines magnitude of projection along 
direction of B0 (z):
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• define classical gyromagnetic ratio for any magnetic particle 

• for e-  Bohr magneton

• for p+  nuclear magneton

• but  is more complicated since these are relativistic quantum particles

• Need fudge factor – the Lande g-factor – such that

• In NMR, we normally use N  in EPR everything is 
discussed in terms of g-values

• Important properties when considering nuclear spin:

• Nuclear spin (I), magnetic moment (μ), magnetogyric ratio ()

• Natural abundance (C)

• Relative Receptivity (DP)

• relative to 13C
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Important factors relating to nuclear spin

• Nuclear spin (I)

• magnetic moment (μ)

• magnetogyric ratio ()

• natural abundance (C)

• relative receptivity (DP)

• relative to 13C
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Isotope Spin % Natural 

Abundance 

Magnetic 

Moment 

(/N) 

Magnetogyric 

Ratio (/10
7
) 

rad T
-1

s
-1

 

Relative 

Receptivity 

(D
P
) 

e 1/2  -3.184x10
3
 -1.761 x 10

4
 2.8 x 10

8
 

1
H 1/2 99.985 4.83724 26.7510 5.68 x 10

3
  

2
H 1 0.015 1.2126 4.1064 8.21 x 10

-3
 

6
Li 1 7.42 1.1625 3.9366 3.58 

7
Li 3/2 92.58 4.20394 10.396 1.54 x 10

3
 

9
Be 3/2 100.0  -3.7954 78.8 

10
B 3 19.58 2.0792 2.8748 22.1 

11
B 3/2 80.42 3.408 8.5827 7.54 x 10

2
 

13
C 1/2 1.108 1.2166 6.7263 1.000 

14
N 1 99.63 0.57099 1.9324 5.69 

15
N 1/2 0.37 -0.4903 -2.7107 2.19 x 10

-2
 

17
O 5/2 0.037  -3.6266 6.11 x 10

-2
 

19
F 1/2 100.0 4.5532 25.1665 4.73 x 10

3
 

29
Si 1/2 4.70 -0.96174 -5.3141 2.09 

31
P 1/2 100.0 1.9602 10.829 3.77 x 10

2
 

33
S 3/2 0.76  2.0517 9.73 x 10

-2
 

35
Cl 3/2 75.53  2.6212 20.2 

37
Cl 3/2 24.47  2.182 3.77 
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Energy required to induce nuclear transitions

• Depends on applied magnetic field (B0) 

• In a 2.35T magnetic field, 1H resonates at 100 MHz  ~ 10-7 eV

• Spectrometers are discussed based on frequency 
required to induce 1H nuclear transition

• Depends on nucleus
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Approaches to Performing NMR Experiments

• Continuous Wave (CW) Experiments  traditional approaches

Fixed Frequency Fixed Magnetic Field

• Pulsed Experiments  modern approach

• use pulsed magnetic fields to cause perturbation  watch effect over time

• relies on Fourier methods to transform from time domain to frequency domain 

• use effect of oscillating magnetic field to induce transitions
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Classical Effect of Rotating Field on Larmor Precession

• apply rotating B1 field  to homogeneous B0 field – what happens?

• under most circumstances – nothing

• rotating field does not interact with 

• unless @ same frequency

• if B1 rotates at Larmor frequency ()

• rotating field can couple 
with magnetic moment

• results in force (F) acting to increase q

• remember: difference between mI states 
in magnetic field is the angle q with respect to B0

• applied to QM: can produce DmI  induces NMR transitions!

• Basic approach used in pulsed techniques (vide infra)
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NMR Chemical Shifts

• If                       was the whole story, NMR would be pretty much useless

• could be used for elemental analysis (maybe) but

• every 1H nucleus would have same Larmor Frequency  at the same energy!

• Fortunately, electronic environment affects response to B0

• This effect could be described in two possible ways:

• different nuclei see different magnetic fields

• different nuclei have different gyromagnetic ratios

• Either way - Larmor frequency depends on chemical environment

• si is “shielding constant”

• usually reported as dppm  in parts per million from 
a reference standard
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for B0 = 2.35T

0 -10+10

dppm

1000 Hz

Chemical shifts are empirical parameters that 
are determined relative to “standards”

e.g. for 1H  Si(CH3)4 (TMS)

[in practice, modern spectrometers perform 
internal calibration, which obviates need for 
external standards – but better safe than sorry]
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2,4

5,7,8,10

1,3  6,9

• e.g. 115 MHz (8.2T) 11B NMR of B10H14 (1H decoupled)

• Intensity mechanism exactly the same for all nuclei of same type:

• sample concentration

• # of nuclei of a particular type

• isotopic distribution

• Chemically identical nuclei are at same position

• But what about interactions with other nuclei?

• Angular momenta should be able to couple...
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Coupling of Angular Momenta  Scalar Coupling

• connected angular momenta can couple with each other

• electron spin with orbital angular momentum (spin-orbit coupling)

• electron spin with electron spin (magnetic coupling of metal ions)

• nuclear spin with nuclear spin (scalar coupling)

• coupling is independent of magnetic field

• strength of coupling is a scalar () that 
connects each of the angular momenta…

• Consider two nuclei with I1 and I2, respectively…
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• Simplest case: 2 indistinguishable I = 1/2 nuclei… (J12 > 0)

• allowed transitions will be where 
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• Pauli Exclusion Principle: valid wavefunction must be either symmetric (+1) 
or antisymmetric (-1) with respect to particle exchange for equivalent 
particles  huh?

• in our current case

• introduce another nomenclature to simplify 
our life for S = 1/2 systems

• the two degenerate configurations must be symmetrized  create another set 
of basis functions…
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• this causes a few issues…

• hidden selection rule  can’t change symmetry

• the energies we’ve calculated are wrong

• we get a new (correct) energy level diagram for this special case
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• what if the two  I = 1/2 nuclei are different from each other?

• we don’t have to worry about the Pauli Exclusion Principle and all of that… 
so it’s easier!
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• what about coupling of one I = 1/2 nucleus (1) to two equivalent I 
= 1/2 nuclei (2, 2’)?
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General Rules about Scalar Coupling (J-Coupling)

• scalar coupling occurs only through atoms connected by chemical bonds

• involves interactions through the electronic manifold  no covalency = no scalar coupling

• can be considered as having three components (I1--(e-)--I2)

• efficiency of electronic bridge depends on nature and number of bonds between nuclei
as well as specific angles relationship between bonds

• nuclei are coupled to the electronic bridge through electron density at the nucleus 
(s-type contributions in the valence orbitals involved in bonding)

• magnitude of scalar coupling also depends on

• magnitude of magnetic moments involved 

• nature of nuclei has dramatic impact on whether
coupling is observed or not

• scalar coupling is independent of magnetic field

• splitting will always occur at a constant  – not constant dppm

• Can be used to differentiate coupling vs. independent signals - e.g. doublet signal vs. two singlets

• effects of scalar coupling are additive

• the effect of J12 and J13 on I1 is determined by applying J12 followed by J13

• always easier to start with largest effect and move downwards (start with J13 if J13 > J12)
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• Example: 5 coordinate phosphorus molecule…
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2J(PH)= 3.0 Hz

1J(NH)= 52.5 Hz

n = 1

I
2

= 1/2

n = 1

I2 = 1

1J(11BH)= 80.5 Hz

1J(10BH)= 27.2 Hz

n = 1

I2 = 3/2

n = 1

I
2

= 3

1J(11BH)= 27.2 Hz
n = 2

I
2

= 3/2

10BH4
-

11BH4
-

14NH4
+

31PMe3
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• intensity distributions due to scalar coupling – general multiplet 
patterns

• depends on number of states involved

• For coupling of I = 1/2 nuclei – use Pascal’s Triangle 

• For I > 1/2 nuclei – use energy diagrams

• simple intensity pattern only holds in the
weak coupling limit, i.e.

• intensities in strong coupling limit causes roofing of NMR multiplets

• roof effect  coupled multiplets point to each other

• due to mixing of nuclear states as

• intensity gets redistributed between transitions

• in limit – outer peaks disappear and obtain singlet

• this is exactly the same thing as why coupling is not 
observed between two magnetically equivalent nuclei
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The strong coupling limit

• see http://physchem.ox.ac.uk/~hmc/tlab/603/ab2.html for demonstration of effect
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• energy level diagram for simple strongly coupled system
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Characteristics of Second Order Spectra

• Peak intensities are not equally distributed

• Position of  is not at centre of multiplets

• Observation of outer lines can be extremely difficult
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• Example – using field dependence to determine 
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First Order and Second Order Spectra  Pople Notation

• Each independent chemical shift is designated by a capital letter

• Choice of letter assignments depends on

• If D/J is small  letters used to designate shifts are close: AB, ABC, …

• This represents second order or strongly coupled systems

• If D/J is large  letters used to designate shifts are more distant: AM, AX, …

• This represents first order or weakly coupled systems

• e.g. two spins 

• A2B for strong coupling

• A2X for weak coupling

• e.g. three spins

• AMX for completely weak coupling

• ABX if two spins are strongly coupled

• ABC if all three are strongly coupled
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Contributions to Spin-Spin Coupling

• several possible contributions to general spin-spin coupling

• Fermi contact (FC)  indirect I-I coupling (mediated by re at nucleus)

• diamagnetic spin-orbit (DSO)  perturbation on filled MOs caused by N

• paramagnetic spin-orbit (PSO)  perturbation on unpaired electrons by N

• spin dipolar (SD)  direct through-space coupling from dipole-dipole interactions

• in solution – usually averages to zero (traceless tensor) even though it may be huge

• may be observable in large systems – slow rotation, long-range packing

• RSD (residual spin dipolar coupling) can be used to obtain structural constraints

• magnitude of coupling can be very large – can be a significant issue in solid-state NMR

• pronounced influence on spin relaxation  provides efficient relaxation pathways

• visualization of Fermi Contact coupling

• through a single bond  1J is positive

• through two bonds  2J is negative (exchange)

• through three bonds  3J is positive
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Spin-spin coupling in paramagnetic complexes

• two important contributions

• spin-nuclear dipolar coupling  through-space coupling of nucleus with e-

• Contact shift  direct overlap of nuclear and electronic wavefunctions

• In principle – coupling leads to very large JNe (in the millions of Hz)

• clearly in strong coupling limit such that peak intensities are not equal

• also leads to very fast paramagnetic relaxation  very broad peaks

• Contact shift splitting collapses to intensity-weighted average 

• massive shift in dppm value  D reflects electron spin density at nucleus
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Effect of Coupling to Quadrupolar Nuclei

• Additional complication since nuclei with I > ½ also have an
electric quadrupole moment (Q) in addition to μ.

• induces loss of spherical symmetry at the nucleus

• the energetic effect of Q on the nuclear wf is given by

• interaction depends on electric field vector (V) at the nucleus

• Quadrupole coupling dramatically increases relaxation rate from excited states

• provides better relaxation pathways  broadens peaks

• averages effect of scalar coupling  as if it doesn’t exist!

• Scalar coupling is usually not observed with I > ½ nuclei unless...

• very high symmetry molecule (electric field gradient = 0 at nucleus)

• Quadrupole moment is very small  coupling to 2H (I = 1) is usually observed
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• effect of relaxation rates for 
quadrupolar coupling

• if relaxation pathways are not
very efficient, then scalar 
coupling is observed

• however, if relaxation is fast, 
only average chemical shift 
position is observed
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Net Magnetisation in Homogeneous Magnetic Field (B0)

• Population of mI=+1/2 is marginally greater

• All nuclei are in either of the two spin states

• Phase of spins is random…

• Overall effect is small net magnetisation (M0)
along z-axis of the laboratory frame
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Effect of NMR Transitions on Net Magnetisation…

• Small excess of mI =  nuclei are forced into mI = b state

• changes the net magnetisation vector…

• i.e. “rotation” of M0 by θ = 180º ()

• What about 90º rotation (/2) of M0?
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How do we perform modifications of M0?

• apply additional magnetic field (B1) along perpendicular axis (y)

• Consider linear oscillation as sum of two circular contributions…
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Interaction of B1 with M0?

• Remember that vectors composing M0 are all precessing in the 
same direction at their Larmor frequency (0)

• M0 will only be affected by component of B1

that rotates about z-axis in same direction as 0

• Resonance condition (excitation) is obtained 
when w0 = 0

Important note: only those spins that are in 
phase with external field (B1) will be excited…
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Effect of pulsed B1 field...

• Turn on B1 oscillating field (where w0 = 0) for period t:

• Rotate net magnetisation into xy plane (/2 pulse) due to phasing

• Change relative populations of  and b spin states

• Create excited state population – which must relax to ground state (M0)

Remember: although individual spins are quantized, magnetisation can have 
many values...
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Relaxation of Mxy  M0

• Mxy precesses around z-axis

• Magnetisation returns to original orientation 

• Simplify problem: 

• use rotating frame of reference

• Define new coordinate system (x’,y’,z) that rotates around static frame of 
reference (laboratory frame) with angular velocity W

• If W = w0 then magnetisation vector doesn’t precess!
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Magnetic moment as a function of time (d/dt)…

• In lab frame: In rotating frame:

• Field looks smaller in rotating frame (precession velocity decreases)

• Addition of B1 field yields:

• Note orientation of contributions…

• A strong enough RF pulse can overwhelm B0

• as long as it is in phase with  rotating frame
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Resonance excitation using strong RF pulse:

• nuclei only ‘see’ the applied field B1 

• Pulse (tp ~ 1-50s) rotates magnetisation vector in y’z plane

• Rotation angle is defined by pulse width:
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Detecting the signal…

• Put ‘receiver coil’ (detector) along y’ axis

• Thus, only component of magnetisation 
along y’ axis will be seen…

• if tp is chosen properly, then q = /2 and 

• Once pulse is stopped, receiver coil 
is activated and the signal is seen to 
decay over time 

 FREE INDUCTION DECAY 
(FID) of magnetic moments.
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Relaxation of perturbed magnetisation vector...

• E is not easily dissipated – different from most spectroscopies

• NMR transitions are lowest energy transitions

• nothing else in proper energy regime

• rotational/vibrational quenching doesn’t really occur

• Relaxation times are therefore very slow ~ seconds

• This means that energy resolution is excellent (remember Heisenberg)
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Transverse Relaxation  represents loss of perturbed signal

• FID of signal occurs because of dephasing of the magnetic moments

• Dephasing occurs due to 

• inhomogeneities in the magnetic field (Tinh)

• energy level modulations (T2)  time-dependent changes in DEb (vide infra)
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• transverse relaxation (continued)

• such that  

• Linewidths of signals depend on T2*:

• Short lifetime = broad peak

• Long lifetime = narrow peak

• T2* includes inhomogeneous field effects and energy level modulations

•
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Off-resonance excitation using strong RF pulse:

• RF pulse will still rotate magnetisation vector by angle q

• Changes will occur in detection… (let’s assume that w0 > 0)

• Magnetization will appear to precess about x’y’ plane with an 
angular velocity of D = (w0-0)

• The signal will oscillate in addition to the FID behaviour:

• Overall decay constant is still related to T2*
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Behaviour of sinusoidal decay curve:

• where 

• Include T2* decay term:

• Can be solved by expanding as a Fourier Series…

• Exponential in time domain  Lorentzian in frequency domain

• Use “fast Fourier transform” (FFT) algorithm to get real and imaginary 
components of spectrum
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One-dimensional FT NMR Spectrum (FID Curve)

09/03/2010 59Chem 529 (2009-W2)

2.1 Nuclear Magnetic Resonance

Time Domain

*
2T

P

A



The University of British Columbia
Department of Chemistry

One-dimensional FT NMR Spectrum (Real Spectrum)
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How does magnetisation relax back to ground state?

• earlier picture of relaxation assumes that 
all relaxation occurs at same rate:

• However, there are two types of relaxation: 

• Transverse relaxation (T2*)  along xy

• Field inhomogeneity (Tinh)

• Time-dependent energy level shifts (T2)

• Longitudinal (Spin-Lattice) relaxation (T1)  along z

• True relaxation through spin-flip transitions
towards ground state magnetisation
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Bloch Equations – Description of Exponential decay to M0

• Equations to describe relaxation of nuclear spins

• Two basic assumptions:
• decay process is exponential

• longitudinal (T1) and transverse (T2*) decay constants are different

• Transverse decay:

• Longitudinal decay:

• Equations yield first-order differential rate equations…
• e.g. for inversion-recovery:

can get T1 from this…

09/03/2010 62Chem 529 (2009-W2)

2.1 Nuclear Magnetic Resonance

*
2

x xdM M

dt T *
2

y ydM M

dt T

0

1

z zdM M M

dt T

0

0 1

ln
2

zM M t

M T

0 0zM M at t



The University of British Columbia
Department of Chemistry

Origins of T1 Relaxation Processes

• Dipole-dipole interactions (DD)
• interactions with other spin active nuclei while tumbling in solution

• Shielding anisotropy (SA)
• Molecular motion (translation) modulates local magnetic fields (in large B0)

• Spin-Rotation interactions (SR)
• Coupling with rotational motion (for equivalent nuclei, e.g. –CF3)

• Scalar Coupling interactions (SC)
• Time-dependent coupling with other nuclear spins

• Unpaired electron interactions (UE)
• Interaction with electron spin  (remember that B is huge!)

• Quadrupolar interactions (Q)
• Additional contributions to DD interactions for nuclei with I > ½

•
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Origins of T2 Relaxation Processes

• List of contributors is similar to T1 contributions...

• Magnitude of T2 directly reflected by peak width in spectra

• not as dependent on B0

• For more details, see:

• Sudmeier, J.L.; Anderson, S.L.; Frye J.S. 
Concepts in Magnetic Resonance, 1990, 2, 197-212.

Relative values of T1 and T2?

• General rule: T1 > T2

• why? dephasing must be complete before achieving equilibrium!
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Standard One-Dimensional NMR Experiments

• D1 must be long enough for system to 
completely relax back to ground state

• 5T1 is usually reasonable

• often times, much shorter D1 are used…

• duration of pulse used for RF excitation (P1)

• short dead time (DE) is needed to minimise electronic noise in 
the data

• due to the RF coils – they don’t turn off instantaneously

• acquisition time (AQ) must be long enough to obtain good 
statistics for FFT procedure

• one of the biggest questions: how long should P1 be?
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Effect of Pulse Width (tp, P1) on 1D NMR Spectrum

• Spectra of ethyl benzene using
single pulse experiments with
differing P1 values 

• /2 pulse gives best signal/noise
but relaxation time is very long

• /3 and /6 pulses give good data
with shorter relaxation times

• /18 pulse gives poor signal/noise

• using a /2 pulse gives best data
per scan but at the expense of
the number of scans…

• intermediate pulse widths are
often more efficient
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Decoupling Experiments

• In many cases, it is useful to somehow ‘turn off’ scalar coupling

• Two general approaches -

• Broadband: remove all coupling to other nuclei (e.g. 1H decoupling)

• Selective: decouple only specific nuclei

• Basic strategy –

• third magnetic field (B2) causes powerful and continuous RF excitation of nuclei

• cause rapid excitation/de-excitation of spins  rapid stimulated relaxation

• effect on other nuclei is that the decoupled nuclei are effectively “invisible”

• Nuclei are thus decoupled

• Additional effects –

• in some cases (with positive NOE effect, vide infra), NMR signal is enhanced 
due to decoupling

• e,g, 1H decoupled 13C NMR is significantly more sensitive
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Example of 1H broadband decoupling
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The Nuclear Overhauser Effect (NOE)

• from dipole-dipole relaxation between two nuclei

• Spin Dipolar Relaxation, D

• do not need scalar coupling! (J12 can be equal to zero)

• transition intensities depend on population differences

• Look at two I = ½

• Equilibration of I2 affects 
populations of I1!

• relaxation pathways for 
I2 involve I1…
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The Nuclear Overhauser Effect (NOE) – Bloch Equations

• most important thing that happens is change in relaxation rates 
for both of the resultant states of the I1 nuclear transitions.

• e.g. consider the effect of saturating the 1H signal (using B2) 
during a 13C experiment
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• let system equilibrate to

• 13C signal depends on initial magnetization of 1H vectors

• 13C signal depends on ratio of CC and CH relaxation rates

• relaxation rates are dependent on              NOE

• since dipolar coupling is major contributor…

• NOE also depends on rotational correlation time (tc)  relative orientations vs. Beff

• For molecules rotating quickly  positive NOE enhancement

• For molecules rotating slowly negative NOE enhancement

• through-space dipole-dipole interactions drop off as 1/r6

• Only close contacts (< 5Å) will be observable (useful way to get structural information)
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• Can do either 1D NOE experiments or 2D NOESY/ROESY

• 1D NOE experiments are basically decoupling experiments!!!

• 1H decoupled 13C NMR is far more sensitive 
than normal 13C due to NOE

• Selective 1D NOE can be used to specifically evaluate dipolar coupling…

• Defocus a particular nucleus (specific B2 pulse)

• Evaluate effect on intensity of all other peaks

• Any enhancements due to NOE indicate dipolar interactions (close proximity)
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Measurement of T1 by the Inversion Recovery Method

• Pulse sequence:
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Measurement of T1 by the Inversion Recovery Method
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Measurement of T2 by Spin-Echo Pulse Sequence

• My after spin echo < My before…

• Change delay time (t)

• Decay of My signal with respect to t  T2

• Tinh is removed due to refocusing effect of spin echo pulse

• Direct measure of T2 (and not T2*)

• Removes Tinh contribution to peak width as well!

• Removes phase shift problem? (not really)
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Effect of J-coupling during Spin Echo Experiment

• Remember: chemical shift position (0) will refocus after (2t)

• But J-coupling affects precession, and therefore 
affects dephasing during t time period…

• The influence of J also depends on the spin state of the nucleus 2...

• Direction of rotation depends on I2

• At t=1/(2J), the terms cancel... 
(can be used to get J)

• If we use decoupling, then J-coupling 
information is lost (converts doublet to
singlet)
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Correlation Spectroscopy (COSY)

• Use two dimensions to determine relationship between peaks...

• If homonuclear I1 and I2 are scalar coupled then cross-peaks will 
occur from the following pulse sequence... (how?)
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Insensitive Nuclei Enhanced by Polarization Transfer (INEPT)

• Effect of pulse sequence is to dramatically modify spin populations 
such that transitions for “insensitive” nucleus (13C) are dramatically 
enhanced

• This is done by population inversion...
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Other pulse sequences...

• COSY

• NOESY

• ROESY

• TOCSY

• APT

• DEPT

• HETCOR

• HMQC

• Each uses complex pulse sequences to modify Boltzmann populations 
of states in order to emphasize and/or determine magnitude of 
coupling between different nuclei (either J-coupling and/or dipole 
coupling)
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Effect of Chemical Processes on NMR parameters...

• Assumed time-independent nuclei (nothing happening to them!)

• never actually true but often a reasonable assumption

• Other situations require more detailed investigation (chemical 
exchange, reactivity, etc.)

• Chemical exchange processes

• Example: N,N-dimethylformamide – rotation about C-N amide bond
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• The fact that we can see both peaks indicates that exchange process is 
relatively slow – but compared to what?

• if we increase the temperature to increase the rate of exchange...

• we observe coalescence of signals

• From such data, we can estimate the rate of exchange...

• coalescence T therefore allows calculation of exchange thermodynamics

• window for NMR evaluation of dynamic processes is 10-2 to 108 s-1 (huge)
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