

Math 110 Practice Exam \#2

\square

section

student number

I have read and understood the instructions below:

Instructions:

1. Calculators are not permitted.
2. There are 11 pages (including this cover page) in the test. Justify every answer, and clearly show your work. Unsupported answers will receive no credit.
3. You will be given $\mathbf{9 0} \mathbf{m i n}$ to write this test. Read over the test before you begin.
4. Academic dishonesty: Exposing your paper to another student, copying material from another student, or representing your work as that of another student constitutes academic dishonesty. Cases of academic dishonesty may lead to a zero grade in the test, a zero grade in the course, and other measures, such as suspension from this university.

Question	value	score
1	10	
2	16	
3	6	
4	9	
5	6	
6	6	
7	4 bonus	
Total	$\mathbf{5 3}$	

Question 1:[10 points] State whether each of the following statements is true. If it is, explain why. If it is not, explain why not (for example, by providing a counterexample).
(a)[2 marks] A function can have zero, one, or two horizontal asymptotes.
(b) [2 marks] A polynomial $p(x)$ must have an absolute minimum value on the interval $[0,1]$.
(c)[2 marks] If a function f is continuous on an interval $[a, b]$, then there must be a point c in $[a, b]$ so that the slope of the tangent line to $y=f(x)$ at c is equal to the slope of the secant line (the line joining $(a, f(a)$ and $(b, f(b))$.)
(d)[2 marks] The graph of a continuous function can never cross over an horizontal asymptote.
(e)[2 marks] If f is a continuous function and $f^{\prime}(x)=0$ for all values of x, then $f(x)=0$.

Question 2: [16 points] Let $f(x)=e^{2 / x}$. Consider the curve $y=f(x)$.
(a)[2 points] Find the x-intercepts and y-intercepts of the curve, if there are any.
(b)[2 points] Find the horizontal and vertical asymptotes.
(c)[4 points] Determine where f is increasing and where it is decreasing, and find its local minima and maxima, if these exist.
(d)[4 points] Determine where the curve is concave up and where it is concave down, and find its inflection points, if these exist.
(e)[4 points] Sketch the curve, showing the properties determined in parts (a) through (d).

Question 3: [6 points] The doubling time for a population of the Vibrio Cholerae bacterium (the micro-organism responsible for cholera) can be as short as 20 minutes.

If we start with $1 / 2$ gram of these bacteria, what is the maximum mass of bacteria which could be present after 3 hours? After 8 hours?

Question 4: [9 points] The length l of a rectangle is decreasing at a rate of $2 \mathrm{~cm} / \mathrm{sec}$, while its width w is increasing at a rate of $2 \mathrm{~cm} / \mathrm{sec}$. At some moment, $l=12 \mathrm{~cm}$ and $w=5 \mathrm{~cm}$.
(a)[3 points] Find the rate of change of the area A with respect to time. Be sure to indicate whether the quantity is increasing or decreasing.
(b) [3 points] Find the rate of change of the perimeter P with respect to time. Be sure to indicate whether the quantity is increasing or decreasing.
(c)[3 points] Find the rate of change of the length D of the diagonal with respect to time. Be sure to indicate whether the quantity is increasing or decreasing.

Question 5: [6 points]
(a)[2 points] State the Mean Value Theorem, including all hypotheses, and giving a precise conclusion.
(b) [2 points] Suppose that f is differentiable on the interval (a, b), and that $f^{\prime}(x)=0$ for all x in (a, b). Take a smaller interval $\left[x_{0}, x_{1}\right]$ contained in (a, b), where $x_{0}<x_{1}$. What does the Mean Value Theorem tell you about $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$?
(c)[2 points] Note that the points x_{0} and x_{1} in part (b) are arbitrarily chosen. Use this observation to prove that f is a constant function.

Question 6: [6 points] A baseball thrown into the air at an angle θ, with initial speed v travels a distance R over level ground according to the following formula:

$$
R=\frac{v^{2}}{g} \sin 2 \theta
$$

where g is a constant factor.
Find the angle θ which gives the maximizes the distance that the ball can be thrown.

Question 7: [4 bonus points] The Mean Value Theorem lets us prove that if f and g are continuous and $f^{\prime}(x)=g^{\prime}(x)$ for each point x in an open interval (a, b), then there is a constant C so that $f(x)=g(x)+C$.

Use this fact to prove that $\ln b x=\ln b+\ln x$ (product rule for logarithms).

This page may be used for rough work. It will not be marked.

