CASE 4: HUMAN MASTITIS Immune Response Questions A Summary

LAUREN BADIONG

INNATE IMMUNE RESPONSES

- Provides a physical barrier
 - Teat sphincter contributes to this protection
 - Muscle blocks entrance of the duct by remaining tightly closed
 - Chemical components of stratified squamous epithelium of the duct
 - Fills in the duct with keratin
 - Keratin physically blocks bacteria from invading, acts like a plug
 - Also chemically attacks the pathogen alter their cell wall by using fatty acids composing the keratin
 - Physical and chemical blocks protect the host between milking periods
- After bacteria gets through the sphincter and keratinized epithelium barriers, they move through the duct canal and into the periductal lymphatic system
 - Detected by the immune system of the mammary glands

INNATE IMMUNE RESPONSES: RECOGNITION OF PATHOGENS

- Pathogens are recognized by receptors
 - Pathogen Recognition Receptors (PRRs) are found on macrophages, neutrophils, or dendritic cells
- PRRs can be sub-categorized into
 - Toll-like Receptors (TLR)
 - NOD-like Receptors (NLR)
- PRRs recognize pathogen associated molecular patterns (PAMPs) or damage associated molecular pattern (DAMPs)
 - Activation of receptors lead to an immune response through intracellular signaling cascades
 - This would lead to the increased expression of pro-inflammatory molecules }(ie. cytokines)

INNATE IMMUNE RESPONSESI HUMAN MASTITIS

MASTITIS

- Can be caused by a variety of bacteria
 - Gram-negative (like Escherichia coli)
 - Gram-positive (Staphylococcus aureus)
- Different pathogens will activate different receptors
 - TLR-4: Binds to lipopolysaccharide (gram-negative bacteria)
 - TLR-2: Bindns to peptidoglycan (PGN) and lipoteichoic acid (LTA) (gram-positive bacteria, S. aureus)
 - S. aureus can also be recognized through mannose-binding lectins (MBL), ficolins, and complement molecules

INNATE IMMUNE RESPONSES

MAMMOGENESIS DURING PREGNANCY

- Proliferation and new organization in the tissue
 - Result in higher concentrations of IL-4, IL-10, and TNFalpha (pro-inflammatory cytokines)
 - Cytokines would allow the maintenance of homeostasis and can also be upregulated to pro-inflammatory factors in case infection occurs

INFLAMMATION

- A response to the pathogen's presence
- During mastitis, eicosanoids concentration increases (some being pro-inflammatory, while others being inflammation-resolving

INNATE IMMUNE RESPONSES

PRO-INFLAMMATORY EICOSANOIDS

- Will increase permeability of vascular tissues and blood flow
 - Leads to infiltration of leukocytes in the site of infection, or induced fever
 - Prostaglandins, $PG \rightarrow PGE2$, PGF2a
 - Thromboxane, $TX \rightarrow TXB2$

INFLAMMATION-RESOLVING EICOSANOIDS

- Block the activation of NFkB (a transcription factor that enhances the expression of pro-inflammatory factors)
 - Leads to inhibited leukocyte infiltration
 - Prostaglandins, $PG \rightarrow PGD2$, PGJ2

INNATE IMMUNE RESPONSES

MILK CELL COMPOSITION

- Also plays a role in pathogen-eradication
- Mostly consisted of macrophages (lymphocytes, neutrophils, and mammary epithelial cells)
 - BUT when a pathogen reaches the gland, the leukocyte composition is altered with a consequential increase in neutrophil concentration

NEUTROPHILS

- Are recruited by cytokines and complement components (C5a and C3a)
- Migrate from the circulatory system into the mammary gland tissue
- Inflammatory cytokines cause neutrophils to become bactericidal through the release of defensins, reactive oxygen species, and antibacterial peptides
 - Antibacterial peptides: cathelicidins, hydrolases, proteases, and lysozymes

INNATE IMMUNE RESPONSES

MORE ON NEUTROPHILS

- Release chemokines: prostaglandins and leukotrienes
 - Which enhance inflammation (recruit more cells increase vascular permeability further)
- Have the ability to form neutrophil extracellular trap (NET)
 - NETs physically block the pathogen through the release of nuclear and granular material from the neutrophil

MACROPHAGES

- Phagocytose bacteria in the tissue environment
- Release pro-inflammatory cytokines like tumor necrosis factor alpha (TNF-a) and interleukin 1 beta (IL-1B)

INNATE IMMUNE RESPONSES

EPITHELIAL CELLS IN THE MAMMARY GLANDS

- Release TNF-a, IL-6, and chemokine IL-8 after exposure to bacteria
- After, endothelial cells of mammary gland vasculature upregulate cellular adhesion molecules (E-selectin), intercellular adhesion molecule 1 (ICAM-1), and vascular cellular adhesion molecule 1
 - These facilitate the entry of immune cells of the infected site
- Produce Lactoferrin protein, an antimicrobial factor that alters the milk's composition to make it more challenging for the bacteria to invade
 - Lactoferrin deprives bacteria of iron, with the use of bicarbonate
 - Lactoferrin concentration increases when infection occurs

INNATE IMMUNE RESPONSES

COMPLEMENT FACTORS: C3b and C3bi

- Major components of the innate immune system
- Opsonize bacteria that will later be phagocytosed
- Create a pore on bacteria's surface leading to its death

ADAPTIVE IMMUNE RESPONSES

MAJOR HISTOCOMPATIBILITY COMPLEX CLASS II (MHCII)

- Recognizes antigens on professional antigen-presenting cells like B lymphocytes and macrophages
- Lymphocytes (like CD4+ T helper cells and CD8+ cytotoxic T cells regulate the immune response and eliminate damaged cells respectively
 - CD4+ Th cells activate CD8+ Th cells and NK Cells
 - And they also facilitate B cell differentiation by releasing cytokines (IL-2)
- Th17 cells produce: IL-17, IL-21, IL-22, and IL-26(recruit neutrophils)

DAMAGE TO HOST

BACTERIAL DAMAGE TO HOST

- Mostly a result of the host immune response to bacterial infection, not the pathogens causing direct damage to the host
 - This fact is based on two pieces of evidence
 - 1) They did not find a direct correlation between bacterial counts and levels of host damage
 - 2) They did not find any one specific species of bacteria to responsible for causing severe symptoms (bacteria can invade through cracks on the skin, *Pseudoomonas* spp. And *S. aureus*)
- Damage can be caused by Inflammation response
 - Macrophages can be activated by PAMPs, IFN-y, and TNF-a \rightarrow They then secrete IL-12 and IL-23 to promote an inflammatory Th-1 response
 - Inflammatory responses can also result from macrophage production of reactive oxygen and nitrogen species (ROS and RNS)

DAMAGE TO HOST

BACTERIAL DAMAGE TO HOST

ROS and RNS Species

- ROS are generated by NADPH oxidase
- RNS are generated by NOS-2
- ROS and RNS secretion in excess amounts leads to the denaturation of cellular components such as lipids, proteins, and DNA

• Happens through the process of necrosis and apoptosis MASTITIS: Red Discolouration, Swelling, and Breast Abscesses

- Result from M1 macrophages generating proteases such as lysozyme and pro-inflammatory lipids
- M2 macrophages function to downregulate inflammation
 - Anti-inflammatory cytokines include IL-4, IL-10, and IL-13

DAMAGE TO HOST

BACTERIAL DAMAGE TO HOST

ACTIVATION OF NEUTROPHILS

- Neutrophils would secrete proteases such as elastase
 - Would inactivate bacterial toxins
 - Would damage the host
- Neutrophils are drawn to infection sites through chemokine gradients, and they will migrate away when these signals dissipate
 - Mechanism is imperfect → can drive chronic inflammation and damage due to continued ROS and protease release

BACTERIAL EVASION: INNATE IMMUNE RESPONSE

BACTERIAL ATTEMPT TO EVADE HOST RESPONSE ELEMENTS

MANIPULATION OF INNATE IMMUNE RESPONSE

- Staphylococcal Superantigen-Like proteins (SSLs)
 - *S. aureus* interferes with neutrophil extravasation and through the secretion of specialized proteins, SSLs
 - SSLs slow down the rate of bacterial clearance and phagocytosis
 - Mechanism: They bind to the components of the innate immune system
 - For example: SSL7 binds complement factor C5 and IgA with high affinity, and hinders the latter part of complement activation
- Extracellular Adherence Protein (Eap)
 - Production of Eap inhibits leukocyte migration
 - Eap: made up of four B-grasp-like domains and associates with ICAM-1
 - Blocking ICAM-1 prevents neutrophils from squeezing through endothelial cells of the blood vessel wall (can't get to damaged tissue)

BACTERIAL EVASION: INNATE IMMUNE RESPONSE

BACTERIAL ATTEMPT TO EVADE HOST RESPONSE ELEMENTS

S. AUREUS RELEASE PROTEINS THAT INTERFERE WITH COMPLEMENT PROTEINS DIRECTING OPSONIZATION

- AUREOLYSIN (a secreted Zn-dependent protease)
 - Cleaves C3 to generate C3a and C3b
 - Complement factors I and H bind or degrade C3b to prevents its accumulation on staphylococcal surface
 - It also inhibits C5b from associating with other complement proteins to form the membrane attack complex (MAC) → In this case, MAC might not be that effective because S. aureus is a gram-positive bacteria with a thick peptidoglycan layer

BACTERIAL EVASION: INNATE IMMUNE RESPONSE

BACTERIAL ATTEMPT TO EVADE HOST RESPONSE ELEMENTS

PEPTIDOGLYCAN ACETYLATION (OatA) and D-ALANYLATION OF TEICHOIC ACIDS (DITABCD)

• Provide staphylococcal resistance against antimicrobial-peptide and lysozyme mediated killing

SIDEROPHORES (potential pathogenic trait)

- Molecules that bind and acquire iron from the host
- Presence of siderophores was significantly higher in strains involving mastitis
- Mechanism enables bacteria to evade siderocalin (Scn), a mammalia lipocalin-type protein (prevents iron uptake by pathogenic bacteria)

BACTERIAL EVASION: ADAPTIVE IMMUNE RESPONSE

BACTERIAL ATTEMPT TO EVADE HOST RESPONSE ELEMENTS

S. AUREUS EVASION OF HUMORAL RESPONSE

- Polyclonal activation of B cells by Staphylococcal protein A (SpA)
 - SpA is a secreted protein with five immunoglobulin-binding domains
 - Fcy domain: Binding to this domain prevents opsonophagocytic killing of Staphylococcus bacteria
 - Fab domain: Leads to clonal activation of B cells
 - SpA binding to B cells results in downregulation of certain B-cell receptors and co-receptors
 - This limits proliferation and induce apoptotic cell death
 - This can lead to decreased production of sufficient memory cells needed to prevent future infections

BACTERIAL EVASION: ADAPTIVE IMMUNE RESPONSE

BACTERIAL ATTEMPT TO EVADE HOST RESPONSE ELEMENTS

- Manipulation of T-cell mediated immune responses
 - S. aureus strains secrete various superantigens including toxic shock syndrome toxin and staphylococcal enterotoxins
 - Staphylococcal Superantigens: ability to bypass the MHC-restricted antigen presentation and processing
 - This significantly increases Th1 cell activation
 - Production of cytokine producing Th1 cells → superantigens can skew immune responses (heavily Th1 type)
 - DELAYS development of antigen-specific antibodies
- Virulent factors: promote adherence to host cells
 - Fibronectin-binding proteins, collagen-binding proteins, iron-regulated surface determinants, ECM-binding proteins, and surface proteins

CLEARANCE OF BACTERIAL PATHOGEN

- Properties of human milk as described earlier can clear the infection alone in some cases of mastitis
- *S. Aureus* cases are complicated may not be completely cleared
 - Acute mastitis can evolves into chronic and subclinical mastitis, and the bacteria may persist in the mammary gland
 - Persistence may be the result of bacteria capability to
 - Modify virulence factors
 - Create biofilms
 - Small colony variants (SCV)
 - Exist in intracellular spaces like epithelial cells and macrophages

CHALLENGE OF CLEARING S. AUREUS

- *S. aureus* is a Gram-positive bacteria
 - That induces a weaker immune response compared to those induced by gram-negative pathogens
- Bacteria can trigger an immune dampening right after infection
 - This would result in an increase in TGFB1 (an inflammatory antagonist, would prevent inflammation) and IL-10
- Chronic infection may blunt T-cell reactivity
 - This is a result of myeloid-derived suppressor cells (MDSCs) and some influence of T-regulatory cells
- Capsular Polysaccharides (CP)
 - Can enhance virulence and extracellular survival by inhibiting phagocytosis
- Acapsular *S. aureus* may develop enhances adhesive abilities, and become more prone to being internalized into epithelial cells
 - May avoid immune clearance by internalization within mammary epithelial cells

CHALLENGE OF CLEARING S. AUREUS

- Ability to form biofilms and resist a host immune response
 - Genetic and environmental factors influence biofilm formation
 - Two toxins are involved in establishing biofilms
 - Alpha and Beta toxins
 - \circ Biofilms can be established in deep-seated pockets of infection \rightarrow In the alveoli of the mammary gland
 - Biofilms can allow bacterial cells to evade the antibiotic and host defense mechanisms
 - The dense extracellular matrix and exterior layer of cells will shield the interior layer

CHALLENGE OF CLEARING S. AUREUS

- Formation of Small Colony Variants (SCVs)
 - Slow-growing subpopulations of bacteria will enhance their ability to survive and persist in the environment
 - Increased ability to persist intracellularly
 - Can introduce the possible ability to avoid detection by immune cells
 - May enhance antibiotic resistance
 - SCVs display: decreased respiration, decreased hemolytic activity, decreased coagulase activity, and increased resistance to aminoglycosides (which are all linked to electron transport)
- *S. aureus* as Facultative Intracellular Pathogens
 - Surviving intracellularly: may contribute to relapse and prolonged infections
 - Can invade mammary epithelial cells, endothelial cells, and fibroblasts
 - Antibody-mediated immune response not effective in this case
 - Cell-mediated immune response is also necessary

OUTCOME: PATIENT RECOVERY AND IMMUNITY

ANTIBIOTICS

- Paired with surgical drainage are often necessary to cure infection
- Combination of effective antibiotic treatment PLUS intact host immune response is required for bacterial clearance
- I not cleared completely or effectively, the bacteria may come back

VACCINE

• No vaccine developed and available

BREASTFEEDING TECHNIQUE

- Improper breastfeeding technique plays a big role in effective recovery
 - If not corrected, it may continue to cause milk stasis and pressure on breast
- Mother stopping breastfeeding because of the infection and pain, may lead to further milk stasis getting promoted = worse situation
- Abscesses and tissue damage: may lead to non-milk secreting epithelial cells because of damaged alveoli epithelial cells (compromised milk production)

OUTCOME: PATIENT RECOVERY AND IMMUNITY

RE-INFECTIONS AND PROTEIN A

- Initial exposure and developed memory cells
 - Re-infection may lead to a decrease in long-lived plasma cells (LLPCS) by Protein A
 - PROTEIN A: Binds with B-cells with immunoglobulins, leading to an inability of cells to survive in the bone marrow and differentiate into LLPCs
 - Binding of Protein A to B cells:
 - Results in downregulation of som B-cell receptors and co-receptors
 - This would limit proliferation \rightarrow which would induce apoptotic cell death (Depletion of B-cells)
 - Next re-infection would induce a weaker immune response