
1 Real-Time Scalability

On the Scalability of Real-Time
Scheduling Algorithms on

Multicore Platforms: A Case Study

Sathish Gopalakrishnan
The University of British Columbia

(based on work by others at the University of North Carolina)

2 Real-Time Scalability

Focus of this Talk

 Multicore platforms are predicted to get
much larger in the future.
» 10s or 100s of cores per chip, multiple

hardware threads per core.

 Research Question: How will different
real-time scheduling algorithms scale?

» Scalability is defined w.r.t. schedulability
(more on this later).

3 Real-Time Scalability

Outline

 Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

 Research questions addressed.
 Experimental results.
 Observations/speculation.
 Future work.

4 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

5 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

6 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

7 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

»  Each job of T has a deadline at the next job release of T.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

8 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

»  Each job of T has a deadline at the next job release of T.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

9 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

»  Each job of T has a deadline at the next job release of T.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

This is an earliest-deadline-first schedule.
Much of our work pertains to EDF scheduling…

10 Real-Time Scalability

Scheduling vs. Schedulability

 W.r.t. scheduling, we actually care about two
kinds of algorithms:
» Scheduling algorithm (of course).

– Example: Earliest-deadline-first (EDF): Jobs with earlier
deadlines have higher priority.

» Schedulability test.

Test for
EDF

τ
yes
no

no timing requirement
will be violated if τ is
scheduled with EDF

a timing requirement
will (or may) be
violated …

11 Real-Time Scalability

Multiprocessor Real-Time Scheduling

Two Approaches:

Steps:
1.  Assign tasks to processors (bin

packing).
2.  Schedule tasks on each

processor using a uniprocessor
algorithm.

Partitioning Global Scheduling

Important Differences:
•  One task queue.
•  Tasks may migrate among

the processors.

12 Real-Time Scalability

Scheduling Algorithms Considered

 Partitioned EDF: PEDF.
 Preemptive & Non-preemptive Global

EDF: GEDF & NP-GEDF.
 Clustered EDF: CEDF.

» Partition onto clusters of cores, globally
schedule within each cluster

L2

From other
8 cores…

L1

C C C C

L1

C C C C clusters

13 Real-Time Scalability

Scheduling Algorithms (Continued)

 PD2, a global Pfair algorithm.
» Schedule jobs one quantum at a time at a

“uniform” rate.
– May preempt and migrate jobs frequently.

 Staggered PD2: S-PD2.
» Same as PD2 but quanta are “staggered” to

avoid excessive bus contention.

14 Real-Time Scalability

PD2 Example

  Under partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
»  Due to connections to bin-packing.

  Exception: Global “Pfair” algorithms do not
require caps.
»  Such algorithms schedule jobs one quantum at a time.

– May therefore preempt and migrate jobs frequently.
–  Perhaps less of a concern on a multicore platform.

  Under most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
»  Sufficient for soft real-time systems.

3 tasks with parameters (2,3) on two processors…

0 10 20 30

T = (2,3)

5 15 25

U = (2,3)

V = (2,3)

On Processor 1 On Processor 2

15 Real-Time Scalability

Schedulability

 HRT: No deadline is missed.
 SRT: Deadline tardiness is bounded.
 For some scheduling algorithms,

utilization loss is inherent when checking
schedulability.
» That is, schedulability cannot be

guaranteed for all task systems with total
utilization at most M.

16 Real-Time Scalability

Example: PEDF

  Under partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
»  Due to connections to bin-packing.

  Exception: Global “Pfair” algorithms do not
require caps.
»  Such algorithms schedule jobs one quantum at a time.

– May therefore preempt and migrate jobs frequently.
–  Perhaps less of a concern on a multicore platform.

  Under most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
»  Sufficient for soft real-time systems.

Example: Partitioning three tasks with parameters
(2,3) on two processors will overload one processor.

In terms of bin-packing…

Processor 1 Processor 2

Task 1

Task 2 Task 3

0

1

17 Real-Time Scalability

Schedulability Summary

 HRT SRT

PEDF util. loss util. loss (same as HRT)
GEDF util. loss no loss
NP-GEDF util. loss no loss
CEDF util. loss util. loss (not as bad as PEDF)

PD2 no loss no loss
S-PD2 slight loss no loss

 (must shrink periods
 by one quantum)

18 Real-Time Scalability

GEDF SRT Example

  Under partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
»  Due to connections to bin-packing.

  Exception: Global “Pfair” algorithms do not
require caps.
»  Such algorithms schedule jobs one quantum at a time.

– May therefore preempt and migrate jobs frequently.
–  Perhaps less of a concern on a multicore platform.

  Under most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
»  Sufficient for soft real-time systems.

Earlier example with GEDF…

0 10 20 30

T = (2,3)

5 15 25

U = (2,3)

V = (2,3)

Tardiness is at most one quantum.

19 Real-Time Scalability

Outline

 Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

 Research questions addressed.
 Experimental results.
 Observations/speculation.
 Future work.

20 Real-Time Scalability

Research Questions

  In theory, PD2 is always preferable.
»  It is optimal (no utilization loss).

 What about in practice?
» That is, what happens if system overheads

are taken into account?
 Do migrations really matter on a

multicore platform with a shared cache?
 As multicore platforms get larger, will

global algorithms scale?

Focus of this Talk: An Experimental
comparison of these scheduling
algorithms on the basis of schedulability.

21 Real-Time Scalability

Test System

  HW platform: Sun Niagara (UltraSPARC T1).

– OS has 32 “logical CPUs” to manage.
–  Far larger than any system considered before in RT literature.
– Note: CEDF “cluster” = 4 HW threads on a core.

Core 1 Core 8

L1 L1

L2

…
•  1.2 GHz “RISC-like”
 cores.

•  Relatively simple,
 e.g., no instr.
 reordering
 or branch prediction.

•  Caches somewhat
 small compared to
 Intel.

4 HW threads
per core

16K (8K) L1
instr. (data)
cache per
core
Shared 3MB
L2

22 Real-Time Scalability

Test System (Cont’d)

 Operating System: LITMUSRT: LInux Testbed
for MUltiprocessor Scheduling in Real-Time
systems.
» Developed at UNC.
» Extends Linux by allowing different schedulers to

be linked as “plug-in” components.
» Several (real-time) synchronization protocols are

also supported.
» Code is available at http://www.cs.unc.edu/

~anderson/litmus-rt/.

23 Real-Time Scalability

Methodology

 Ran several hundred (synthetic) task sets
on the test system.

 Collected 70 GB of raw overhead samples.
 Distilled expressions for average (for SRT)

and worst-case (for HRT) overheads.
 Conducted schedulability experiments

involving 8.5 million randomly-generated
task sets with overheads considered.

Note: This step is offline. It
does not involve the Niagara.

24 Real-Time Scalability

Kinds of Overheads

  Tick scheduling overhead.
»  Incurred when the kernel is invoked at the beginning of

each quantum (timer “tick”). A quantum is 1ms.
  Release overhead.

»  Incurred when the kernel is invoked to handle a job
release.

  Scheduling overhead.
»  Incurred when the scheduler (in the kernel) is invoked.

  Context-switching overhead.
»  Non-cache-related costs associated with a context switch.

  Preemption/migration overhead.
»  Costs incurred upon a preemption/migration due to a loss

of cache affinity.

These overheads can be accounted
for in schedulability tests by inflating

job execution costs.

(Doing this correctly is a little tricky.)

25 Real-Time Scalability

Kernel Overheads

Alg Scheduling Overhead (in µs)
PD2 32.7
S-PD2 43.1
GEDF/NP-GEDF 55.2+.26N (N = no. of tasks)

 Most overheads were small (2-15µs) except
worst-case overheads impacted by global
queues.
» Most notable: Worst-case scheduling overheads

for PD2, S-PD2, and GEDF/NP-GEDF:

26 Real-Time Scalability

Preemption/Migration Overheads

 Obtained by measuring synthetic tasks, each
with a 64K working set & 75/25 read/write ratio.
»  Interesting trends: PD2 is terrible, staggering really

helps, preempt. cost ≈ mig. cost per algorithm, but
algorithms that migrate have higher costs.

 Worst-Case Overheads (in µs)
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1
S-PD2 104.1 103.4 103.4 104.1
GEDF 375.4 375.4 326.8 321.1
CEDF 171.6 171.6 167.3 ---
PEDF 139.1 139.1 --- ---

27 Real-Time Scalability

Schedulability Results

  Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).
»  8.5 million task sets in total.

  Distributions:
»  Utilizations uniform over

–  [0.001,01] (light),
–  [0.1,0.4] (medium), and
–  [0.5,09] (heavy).

»  Bimodal with utilizations distributed over either
[0.001,05) or [0.5,09] with probabilities of
–  8/9 and 1/9 (light),
–  6/9 and 3/9 (medium), and
–  4/9 and 5/9 (heavy).

28 Real-Time Scalability

Schedulability Results

  Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).
»  8.5 million task sets in total.

  Distributions:
»  Utilizations uniform over

–  [0.001,01] (light),
–  [0.1,0.4] (medium), and
–  [0.5,09] (heavy).

»  Bimodal with utilizations distributed over either
[0.001,05) or [0.5,09] with probabilities of
–  8/9 and 1/9 (light),
–  6/9 and 3/9 (medium), and
–  4/9 and 5/9 (heavy).

will only show graphs
for these

29 Real-Time Scalability

HRT Summary

  PEDF usually wins.
»  Exception: Lots of heavy tasks (makes bin-packing

hard).
  S-PD2 usually does well.

»  Staggering has an impact.

  PD2 and GEDF are quite poor.
»  PD2 is negatively impacted by high preemption and

migration costs due to aligned quanta.
»  GEDF suffers from high scheduling costs (due to

the global queue).

30 Real-Time Scalability

HRT, Bimodal Light

PEDF peforms pretty well if most
task utilizations are low.

S-PD2 performs pretty well too.

31 Real-Time Scalability

HRT, Bimodal Light

32 Real-Time Scalability

HRT, Bimodal Medium

In this and the next slide, as the
fraction of heavy tasks grows, the gap
between S-PD2 and PEDF narrows.

33 Real-Time Scalability

HRT, Bimodal Medium

34 Real-Time Scalability

HRT, Bimodal Heavy

35 Real-Time Scalability

SRT Summary

 PEDF is not as effective as before, but
still OK in light-mostly cases.

 CEDF performs the best in most cases.
 S-PD2 still performs generally well.
 GEDF is still negatively impacted by

higher scheduling costs.
» Note: SRT schedulability for GEDF entails

no utilization loss.
» NP-GEDF and GEDF are about the same.

 Note: The scale is different from before.

36 Real-Time Scalability

SRT, Bimodal Light

PEDF and CEDF perform well if tasks
are mostly light.

Note: S-PD2 never performs really badly
in any experiment.

37 Real-Time Scalability

SRT, Bimodal Light

38 Real-Time Scalability

SRT, Bimodal Medium

This and the next slide show that as the
frequency of heavy tasks increases,
PEDF degrades. CEDF isn’t affected
by this increase much.

39 Real-Time Scalability

SRT, Bimodal Medium

40 Real-Time Scalability

SRT, Bimodal Heavy

41 Real-Time Scalability

Outline

 Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

 Research questions addressed.
 Experimental results.
 Observations/speculation.
 Future work.

42 Real-Time Scalability

Observations/Speculation

  Global algorithms are really sensitive to how
shared queues are implemented.
»  Saw 100X performance improvement by switching

from linked lists to binomial heaps.
»  Still working on this…
»  Speculation: Can reduce GEDF costs to close to

PEDF costs for systems with ≤ 32 cores.
  Per algorithm, preempt. cost ≈ mig. cost.

»  Due to having a shared cache.
»  One catch: Migrations increase both costs.

  Quantum staggering is very effective.

43 Real-Time Scalability

Observations/Speculation (Cont’d)

 No one “best” algorithm.
  Intel has claimed they will produce an 80-

core general-purpose chip. If they do…
»  the cores will have to be simple ⇒ high

execution costs ⇒ high utilizations ⇒ PEDF
will suffer;

»  “pure” global algorithms will not scale;
» some instantiation of CEDF (or maybe CS-

PD2) will hit the “sweet spot”.

44 Real-Time Scalability

Future Work

 Thoroughly study “how to implement shared
queues”.

 Repeat this study on Intel and embedded
machines.

 Examine mixed HRT/SRT workloads.
 Factor in synchronization and dynamic

behavior.
»  In past work, PEDF was seen to be more

negatively impacted by these things.

45 Real-Time Scalability

Thanks!

 Questions?

46 Real-Time Scalability

SRT Tardiness, Uniform Medium

47 Real-Time Scalability

Measuring Overheads

  Done using a UNC-produced tracer called
Feather-Trace.
»  http://www.cs.unc.edu/~bbb/feathertrace/

  Highest 1% of values were tossed.
»  Eliminates “outliers” due to non-deterministic

behavior in Linux, warm-up effects, etc.
  Used worst-case (average-case) values for

HRT (SRT) schedulability.
  Used linear regression analysis to produce

linear (in the task count) overhead
expressions.

48 Real-Time Scalability

Obtaining Kernel Overheads

 Ran 90 (synthetic) task sets per
scheduling algorithm for 30 sec.

  In total, over 600 million individual
overheads were recorded (45 GB of
data).

49 Real-Time Scalability

Kernel Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Tick Schedule Context SW Release
PD2 11.2 +.3N 32.7 3.1+.01N ---
S-PD2 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

 Average
Alg Tick Schedule Context SW Release
PD2 4.3+.03N 4.7 2.6+.001N ---
S-PD2 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N

50 Real-Time Scalability

Kernel Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Tick Schedule Context SW Release
PD2 11.2 +.3N 32.7 3.1+.01N ---
S-PD2 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

 Average
Alg Tick Schedule Context SW Release
PD2 4.3+.03N 4.7 2.6+.001N ---
S-PD2 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N

51 Real-Time Scalability

Obtaining Preemption/Migration
Overheads

  Ran 90 (synthetic) task sets per scheduling
algorithm for 60 sec.

  Each task has a 64K working set (WS) that it
accesses repeatedly with a 75/25 read/write
ratio.

  Recorded time to access WS after
preemption/migration minus “cache-warm
access”.

  In total, over 105 million individual preemption/
migration overheads were recorded (15 GB of
data).

52 Real-Time Scalability

Preemption/Migration Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1
S-PD2 104.1 103.4 103.4 104.1
GEDF 375.4 375.4 326.8 321.1
CEDF 171.6 171.6 167.3 ---
PEDF 139.1 139.1 --- ---

 Average
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 172 131.4 141.8 187.6
S-PD2 89.3 86.2 87.8 90.2
GEDF 73 95.1 73.5 72.6
CEDF 67 78.5 64.8 ---
PEDF 72.3 72.3 --- ---

53 Real-Time Scalability

Preemption/Migration Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1
S-PD2 104.1 103.4 103.4 104.1
GEDF 375.4 375.4 326.8 321.1
CEDF 171.6 171.6 167.3 ---
PEDF 139.1 139.1 --- ---

 Average
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 172 131.4 141.8 187.6
S-PD2 89.3 86.2 87.8 90.2
GEDF 73 95.1 73.5 72.6
CEDF 67 78.5 64.8 ---
PEDF 72.3 72.3 --- ---

54 Real-Time Scalability

HRT, Uniform Light

This is the easiest case for partitioning,
so PEDF wins.

S-PD2 does pretty well too.

55 Real-Time Scalability

HRT, Uniform Light

56 Real-Time Scalability

HRT, Uniform Medium

Similar to before.

Utilizations aren’t high enough to start
causing problems for partitioning.

57 Real-Time Scalability

HRT, Uniform Medium

58 Real-Time Scalability

HRT, Uniform Heavy

Utilizations are high enough to cause
problems for partitioning.

S-PD2 wins now.

59 Real-Time Scalability

HRT, Uniform Heavy

60 Real-Time Scalability

SRT, Uniform Light

PEDF wins, S-PD2 performs pretty well.

61 Real-Time Scalability

SRT, Uniform Light

62 Real-Time Scalability

SRT, Uniform Medium

CEDF really benefits from using a
“no utilization loss” schedulability test
within each cluster.

63 Real-Time Scalability

SRT, Uniform Medium

64 Real-Time Scalability

SRT, Uniform Heavy

GEDF and NP-GEDF actually win in
this case.

CEDF and S-PD2 perform pretty well.

PEDF loses.

65 Real-Time Scalability

SRT, Uniform Heavy

On the Implementation
of Global Real-Time Schedulers

Sathish Gopalakrishnan
The University of British Columbia

Work supported by IBM, SUN, and Intel Corps., NSF grants CNS 0834270, CNS 0834132, and CNS 0615197, and ARO grant W911NF-06-1-0425.

Simon Fraser University
April 15, 2010

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (I)

2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

3

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Intel 4x 2.7 GHz Xeon SMP
(few, fast processors; private caches)

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

4

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

partitioned EDF

2 x global EDF

2 x PFAIR

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

5

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

“for each tested scheme, scenarios exist
in which it is a viable choice”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (II)

6

Brandenburg et al. (2008)
➡ What if there are many slow processors?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

UNC’s Implementation Studies (II)

7

Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

UNC’s Implementation Studies (II)

8

Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

G-EDF: high overheads, low schedulability.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Today’s discussion

9

How to implement global schedulers?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

Today’s discussion

10

How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Instead of
considering

one
implementation

of several
different
scheduling

algorithms…

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

Today’s discussion

11

How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.
➡ Case study: nine G-EDF variants on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF G-EDF

G-EDF G-EDF

G-EDF

G-EDF G-EDF

G-EDF

G-EDF

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Design Choices

12
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Design Choices

13

➡ When to schedule.
➡ Quantum alignment.
➡ How to handle interrupts.
➡ How to queue pending jobs.
➡ How to manage future releases.
➡ How to avoid unnecessary preemptions.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

14
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

15

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur

immediately

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

release completion

Scheduler Invocation

16

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur

immediately

Quantum-Driven
➡ on every timer tick
➡ easier to implement
➡ on release a job is just

enqueued; scheduler is
invoked at next tick

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

17

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

P1

P2

5 10 150
release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

18

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2

5 10 150

P1

P2

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

19

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

20

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

21

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150
release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

22
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

23

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be

delayed by each interrupt.

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

24

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be

delayed by each interrupt.

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Dedicated interrupt handling.
➡ Only one processor services interrupts.
➡ Jobs may execute on other processors.
➡ Jobs are not delayed by release interrupts.
➡ Well-known technique; used in the Spring

kernel (Stankovic and Ramamritham, 1991).
➡ How does it affect schedulability?

J.A. Stankovic and K. Ramamritham (1991), The Spring kernel: A new paradigm for real-time systems. IEEE Software, 8(3):62–72.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

25

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Ready Queue

26

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Ready Queue

27

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

Requirements.
➡ Mergeable priority queue: release n

jobs in O(log n) time.
➡ Parallel enqueue / dequeue operations.
➡ Mostly cache-local data structures.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

28

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.	

➡ Problem: lock contention.
➡ Problem: bus contention.

P1 P2

…

P32

Coarse-Grained Heap Hierarchical Heaps Fine-Grained Heap

In this study, we consider three queue implementations.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Coarse-Grained Heap

29

Binomial heap + single lock.
➡ Lock used to synchronize all G-EDF state.
➡ Mergeable queue.
➡ No parallel updates.
➡ No cache-local updates.
➡ Low locking overhead

(only single lock acquisition).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Hierarchical Heaps

30

P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Hierarchical Heaps

31

P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

Locking.
➡ Dequeue: top-down.
➡ Enqueue: bottom-up.
➡ Enqueue may have to

drop lock, retry.
➡ Additional complexity

wrt. dequeue (see paper).
➡ Bottom line: expensive.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Fine-Grained Heap

32

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Fine-Grained Heap

33

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Locking.
➡ Many lock acquisitions.
➡ Atomic peek+dequeue

operation needed to check for
preemptions.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Additional Components

34

Release queue.
➡ Support mergeable queues.
➡ Support dedicated interrupt handling.

Job-to-processor mapping.
➡ Quickly determine whether preemption is required.
➡ Avoid unnecessary preemptions.
➡ Used to linearize concurrent scheduling decisions.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Implementation in LITMUSRT

35
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

36

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

37

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

38

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

Scheduler Plugin API.
➡ scheduler_tick()
➡ schedule()
➡ release_jobs()

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

39

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

FEm fine-grained event-driven global

HEm hierarchical event-driven global

S-CQm coarse-grained quantum (staggered) global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

40

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

41

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Baseline from
(Brandenburg et al., 2008)

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

42

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

No fine-grained heaps + quantum-driven scheduling.
(Parallel updates not beneficial due to quantum barrier.)

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

43

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

44

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

No hierarchical heaps + dedicated interrupt handling.
(Hierarchical heaps not beneficial if only one proc. enqueues.)

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Schedulability Study

45
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Objective

46

Compare the discussed implementations
in terms of the ratio of randomly-generated task sets

that can be shown to be schedulable
under consideration of system overheads.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

47
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

48

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Context switch overhead.
➡ Changing address space.

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

49

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Tick overhead.
➡ Cost of a periodic timer interrupt.
➡ Beginning of a new quantum.

Context switch overhead.
➡ Changing address space.

Preemption and migration overhead.
➡ Loss of cache affinity.
➡ Known from (Brandenburg et al., 2008).

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

IPI Latency

50

P1

P2 T x
1T y

2

T z
3 T y

2

IPI latency

5 10 150

Inter-processor interrupts (IPIs).
➡ Interrupt may be processed by a processor different from the one

that will schedule a newly-arrived job.
➡ Requires notification of remote processor.
➡ Event-based scheduling incurs added latency.

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Test Platform

51

LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Test Platform

52

LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara”

0

100

200

300

400

500

600

700

PFAIR S-PFAIR G-EDF C-EDF P-EDF

Overheads
➡ Traced overheads under each of the plugins.
➡ Collected more than 640,000,000 samples (total).
➡ Computed worst-case and average-case overheads.
➡ Over 20 graphs; see online version.

Outliers
➡ Removed top 1% of samples to discard outliers.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Example: Tick Overhead

53

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case tick overhead

CEm tick overhead (worst-case)
CE1 tick overhead (worst-case)
FEm tick overhead (worst-case)
FE1 tick overhead (worst-case)

CQm tick overhead (worst-case)
CQ1 tick overhead (worst-case)
HEm tick overhead (worst-case)“Higher is worse.”

number of tasks

m
ic

ro
se

co
nd

s

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Example: Tick Overhead

54

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case tick overhead

CEm tick overhead (worst-case)
CE1 tick overhead (worst-case)
FEm tick overhead (worst-case)
FE1 tick overhead (worst-case)

CQm tick overhead (worst-case)
CQ1 tick overhead (worst-case)
HEm tick overhead (worst-case)

Event-Driven

Quantum-Driven

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case release overhead

CEm release overhead (worst-case)
CE1 release overhead (worst-case)
FEm release overhead (worst-case)
FE1 release overhead (worst-case)

CQm release overhead (worst-case)
CQ1 release overhead (worst-case)
HEm release overhead (worst-case)

Example: Release Overhead

55

Quantum-Driven

Event-Driven

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

56

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

57

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded

tardiness.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

58

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Task set generation.
➡ Six utilization distributions (uniform and bimodal).
➡ Three period distributions (uniform).
➡ Over 300 graphs; see online version.

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded

tardiness.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Results

59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

increasing utilizationsc
he

du
la

bl
e

ta
sk

 s
et

s

“Higher is better.”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

Dedicated

Zero Overh.Global

Dedicated interrupt handling
was generally preferable (or no worse).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Staggering

61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Staggered

Zero OverheadsAligned

Staggered quanta
were generally preferable (or no worse).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum- vs. Event-Driven

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF FE1 S-CQ1

Quantum
Event

Event-driven scheduling
was preferable in most cases.

Zero Overh.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Choice of Ready Queue (1)

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm HEm

Hierarchical
Coarse-Grained

Zero Overh.

The coarse-grained ready queue
performed better than the hierarchical queue.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Choice of Ready Queue (II)

64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Zero O.Coarse-Grained

Fine-Grained

The fine-grained ready queue
performed marginally better than the coarse-grained queue
if used together with dedicated interrupt handling.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Conclusion

65
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Summary of Results

66

Implementation choices
can impact schedulability as much as

scheduling-theoretic tradeoffs.

Unless task counts are very high
or periods very short,

G-EDF can scale to 32 processors.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Recommendation

67

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Best results obtained with combination of:

fine-grained heap
event-driven scheduling

dedicated interrupt handling

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Future Work

68

Platform.
➡ Repeat study on embedded hardware platform.

Implementation.
➡ Simplify locking requirements.
➡ Parallel mergeable heaps?

Analysis.
➡ Less pessimistic hard real-time G-EDF schedulability tests.
➡ Less pessimistic interrupt accounting.

Tuesday, April 5, 2011

	SFU-1.pdf
	SFU-2

