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The Zeeman effect... the foundation of magnetic resonance

• effect of magnetic field (B) on isolated nucleus with I > 0?

• nuclear spin (angular momentum) states will split (e.g. I = 3/2)

• energy splitting of the nuclear wavefunction is 
determined by nuclear Zeeman Hamiltonian

• for electric dipole allowed transition in 
spherical symmetry:
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Classical Model for Nuclear Zeeman Effect

• classical magnetic moment (μ) precesses (rotates) about 
the axis of external magnetic field (B0) 

• Larmor precession with frequency:

• cone angle depends on μ, which depends on mI

• 2I+1 different values

• also depends on 

• mI defines magnitude of projection along 
direction of B0 (z):
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• define classical gyromagnetic ratio for any magnetic particle 

• for e-  Bohr magneton

• for p+  nuclear magneton

• but  is more complicated since these are relativistic quantum particles

• Need fudge factor – the Lande g-factor – such that

• In NMR, we normally use N  in EPR everything is 
discussed in terms of g-values

• Important properties when considering nuclear spin:

• Nuclear spin (I), magnetic moment (μ), magnetogyric ratio ()

• Natural abundance (C)

• Relative Receptivity (DP)

• relative to 13C
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Important factors relating to nuclear spin

• Nuclear spin (I)

• magnetic moment (μ)

• magnetogyric ratio ()

• natural abundance (C)

• relative receptivity (DP)

• relative to 13C
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Isotope Spin % Natural 

Abundance 

Magnetic 

Moment 

(/N) 

Magnetogyric 

Ratio (/10
7
) 

rad T
-1

s
-1

 

Relative 

Receptivity 

(D
P
) 

e 1/2  -3.184x10
3
 -1.761 x 10

4
 2.8 x 10

8
 

1
H 1/2 99.985 4.83724 26.7510 5.68 x 10

3
  

2
H 1 0.015 1.2126 4.1064 8.21 x 10

-3
 

6
Li 1 7.42 1.1625 3.9366 3.58 

7
Li 3/2 92.58 4.20394 10.396 1.54 x 10

3
 

9
Be 3/2 100.0  -3.7954 78.8 

10
B 3 19.58 2.0792 2.8748 22.1 

11
B 3/2 80.42 3.408 8.5827 7.54 x 10

2
 

13
C 1/2 1.108 1.2166 6.7263 1.000 

14
N 1 99.63 0.57099 1.9324 5.69 

15
N 1/2 0.37 -0.4903 -2.7107 2.19 x 10

-2
 

17
O 5/2 0.037  -3.6266 6.11 x 10

-2
 

19
F 1/2 100.0 4.5532 25.1665 4.73 x 10

3
 

29
Si 1/2 4.70 -0.96174 -5.3141 2.09 

31
P 1/2 100.0 1.9602 10.829 3.77 x 10

2
 

33
S 3/2 0.76  2.0517 9.73 x 10

-2
 

35
Cl 3/2 75.53  2.6212 20.2 

37
Cl 3/2 24.47  2.182 3.77 
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Energy required to induce nuclear transitions

• Depends on applied magnetic field (B0) 

• In a 2.35T magnetic field, 1H resonates at 100 MHz  ~ 10-7 eV

• Spectrometers are discussed based on frequency 
required to induce 1H nuclear transition

• Depends on nucleus
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Approaches to Performing NMR Experiments

• Continuous Wave (CW) Experiments  traditional approaches

Fixed Frequency Fixed Magnetic Field

• Pulsed Experiments  modern approach

• use pulsed magnetic fields to cause perturbation  watch effect over time

• relies on Fourier methods to transform from time domain to frequency domain 

• use effect of oscillating magnetic field to induce transitions
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Classical Effect of Rotating Field on Larmor Precession

• apply rotating B1 field  to homogeneous B0 field – what happens?

• under most circumstances – nothing

• rotating field does not interact with 

• unless @ same frequency

• if B1 rotates at Larmor frequency ()

• rotating field can couple 
with magnetic moment

• results in force (F) acting to increase q

• remember: difference between mI states 
in magnetic field is the angle q with respect to B0

• applied to QM: can produce DmI  induces NMR transitions!

• Basic approach used in pulsed techniques (vide infra)
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NMR Chemical Shifts

• If                       was the whole story, NMR would be pretty much useless

• could be used for elemental analysis (maybe) but

• every 1H nucleus would have same Larmor Frequency  at the same energy!

• Fortunately, electronic environment affects response to B0

• This effect could be described in two possible ways:

• different nuclei see different magnetic fields

• different nuclei have different gyromagnetic ratios

• Either way - Larmor frequency depends on chemical environment

• si is “shielding constant”

• usually reported as dppm  in parts per million from 
a reference standard

09/02/2010 12Chem 529 (2009-W2)

2.1 Nuclear Magnetic Resonance

0 02
B

0 0

(1 )

2 2
eff N i

i B B

0(1 )
2 2i eff iB B

usual way of thinking in NMR

60

0

10ppm



The University of British Columbia
Department of Chemistry 2.1 Nuclear Magnetic Resonance

Chem 529 (2009-W2) 1309/02/2010

for B0 = 2.35T
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Chemical shifts are empirical parameters that 
are determined relative to “standards”

e.g. for 1H  Si(CH3)4 (TMS)

[in practice, modern spectrometers perform 
internal calibration, which obviates need for 
external standards – but better safe than sorry]
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2,4

5,7,8,10

1,3  6,9

• e.g. 115 MHz (8.2T) 11B NMR of B10H14 (1H decoupled)

• Intensity mechanism exactly the same for all nuclei of same type:

• sample concentration

• # of nuclei of a particular type

• isotopic distribution

• Chemically identical nuclei are at same position

• But what about interactions with other nuclei?

• Angular momenta should be able to couple...
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Coupling of Angular Momenta  Scalar Coupling

• connected angular momenta can couple with each other

• electron spin with orbital angular momentum (spin-orbit coupling)

• electron spin with electron spin (magnetic coupling of metal ions)

• nuclear spin with nuclear spin (scalar coupling)

• coupling is independent of magnetic field

• strength of coupling is a scalar () that 
connects each of the angular momenta…

• Consider two nuclei with I1 and I2, respectively…
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• Simplest case: 2 indistinguishable I = 1/2 nuclei… (J12 > 0)

• allowed transitions will be where 
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• Pauli Exclusion Principle: valid wavefunction must be either symmetric (+1) 
or antisymmetric (-1) with respect to particle exchange for equivalent 
particles  huh?

• in our current case

• introduce another nomenclature to simplify 
our life for S = 1/2 systems

• the two degenerate configurations must be symmetrized  create another set 
of basis functions…
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• this causes a few issues…

• hidden selection rule  can’t change symmetry

• the energies we’ve calculated are wrong

• we get a new (correct) energy level diagram for this special case
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• what if the two  I = 1/2 nuclei are different from each other?

• we don’t have to worry about the Pauli Exclusion Principle and all of that… 
so it’s easier!
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• what about coupling of one I = 1/2 nucleus (1) to two equivalent I 
= 1/2 nuclei (2, 2’)?
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