

1. Symmetry, Group Theory, and Electronic Structure

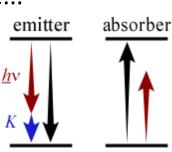
2. Ground State Spectroscopic Methods

- 2.1 Nuclear Magnetic Resonance
- 2.2 Electron Paramagnetic Resonance
- 2.3 Mössbauer Spectroscopy
- 3. Excited State Spectroscopic Methods
- 4. Other Physical Methods

57Fe

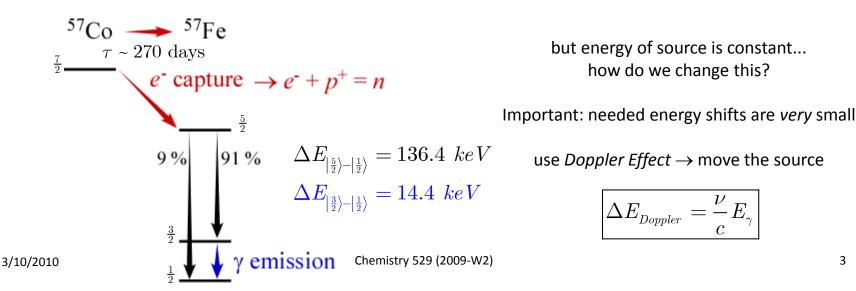
 $I = \frac{5}{2}$

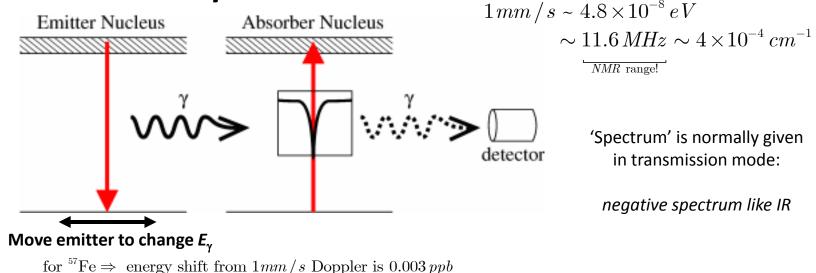
 $136.4 \ keV$


Fundamentals of Mössbauer Spectroscopy

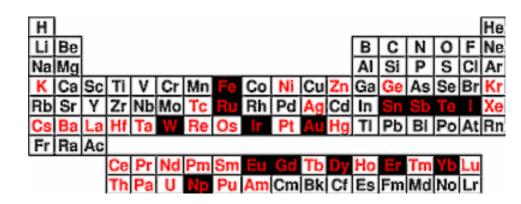
- different possible 'arrangement' of nuclear particles will yield different angular momentum states – e.g. ⁵⁷Fe
- just like *electronic states singlets/triplets, HS/LS complexes*
- transitions between these states require γ-rays

- resonant absorption/emission of γ -radiation should be possible...
 - but gas phase experiments did not work
 - freely moving atoms lose energy through $recoil \rightarrow$ kinetic energy (K)
 - *Mössbauer* thought it should work in solids \rightarrow no loss due to recoil

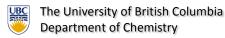



3

Sources of *γ*-radiation


- to do spectroscopy we need a *tunable* source of γ -radiation
- but there are few ways to generate γ -radiation
 - γ -emission of radioactive nuclei (not directly tunable)
 - electron accelerators/synchrotron sources (still very new)
- use radioactive source of appropriate atom, which emits radiation at ~ the correct energy (e.g. 57 Fe)

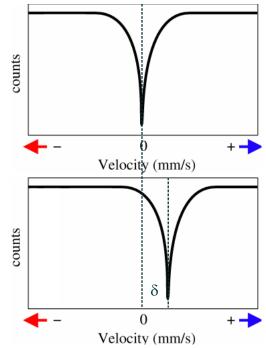
The Mössbauer Experiment

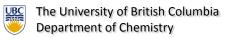

- on which elements has this been done?
 - experiments have been successful on atoms in red

Nuclear parameters for selected Mössbauer isotopes

Isotope	$E_{\gamma}/{ m keV}$	$\Gamma_{\rm r}/({\rm mm~s^{-1}})$ = 2 $\Gamma_{\rm nat}$	I _g	I _e	α	Natural abundance %	Nuclear decay*
⁵⁷ Fe	14.41	0. <mark>192</mark>	1/2-	3/2-	8.17	2.17	⁵⁷ Co(EC 270 d)
⁶¹ Ni	67.40	0.78	3/2-	5/2-	0.12	1.25	⁶¹ Co(β-99 m)
¹¹⁹ Sn	23.87	0.626	1/2+	3/2+	5.12	8.58	^{119m} Sn(IT 50 d)
¹²¹ Sb	37.15	2.1	5/2+	7/2+	~10	57.25	^{121m} Sn(β-76 y)
¹²⁵ Te	35.48	5.02	1/2+	3/2+	12.7	6.99	¹²⁵ I(EC 60d)
127 I	57.60	2.54	5/2+	7/2+	3.70	100	127m Te (β -109 d)
¹²⁹ I	27.72	0.59	7/2+	5/2+	5.3	nil	129m Te (β -33 d)
¹⁴⁹ Sm	22.5	1.60	7/2	5/2-	~12	13.9	¹⁴⁹ Eu(EC 106 d)
¹⁵¹ Eu	21.6	1.44	5/2+	7/2+	29	47.8	¹⁵¹ Gd(EC 120 d)
¹⁶¹ Dy	25.65	0.37	5/2+	5/2-	~2.5	18.88	¹⁶¹ Tb(β ⁻ 6.9 d)
¹⁹³ Ir	73.0	0.60	3/2+	1/2+	~6	61.5	¹⁹³ Os(β-31 h)
¹⁹⁷ Au	77.34	1.87	3/2+	1/2+	4.0	100	¹⁹⁷ Pt(β ⁻ 18 h)
²³⁷ Np	59.54	0.067	5/2+	5/2-	1.06	nil	²⁴¹ Am(α458 y)

*EC = electron capture, β^- = beta-decay, IT = isomeric transition, α – alpha-decay


Basic Principles


• spectrum will give *relative energy* of absorber nuclear transitions

 $\delta = E_A - E_S$

- if sample = source (⁵⁷Fe atom in source ⁵⁷Co lattice)
 - single transition at v = 0
- if sample is different from source
 - transition may not occur at same energy
 - isomer shift (δ) gives ΔE from ⁵⁷Fe atom reference
 - note: δ is **very** small relative to actual transition energy

 $1 mm / s \sim 4.8 \times 10^{-8} eV$ vs. 14400 eV

Contributions to Mössbauer Isomer Shift (δ)

- very similar to NMR chemical shifts...
- difference in electron density at the nucleus relative to source

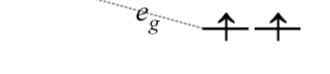
$$\begin{split} \delta &= k \ \left\langle \psi_A^n \ 0 \ \mid \psi_A^n \ 0 \ \right\rangle - \left\langle \psi_S^n \ 0 \ \mid \psi_S^n \ 0 \ \right\rangle \\ &= E_A - E_S \end{split}$$

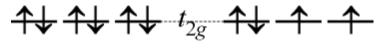
Standard reference for
57
Fe:
 α -Fe

- *shielding/deshielding* of nuclear charge = change in energy levels
- can only come from electron density in s orbitals
- a.k.a. electric monopole interaction
- $\langle \psi_A^n | 0 | \psi_A^n | 0 \rangle$ is controlled by several factors:
 - total electron density of the ion
 - electronic spin state

3/10/2010

metal-ligand delocalization

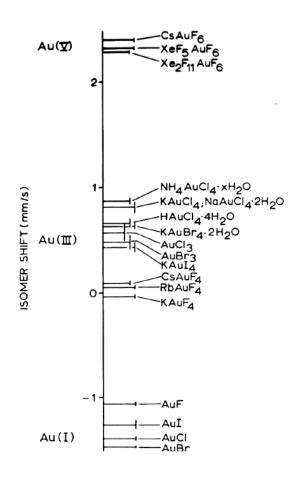

greater shielding in Fe^{II} delocalizes electron cloud...

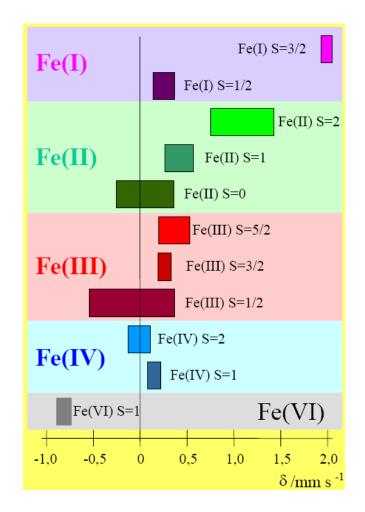

$$\delta_{\rm Fe^{II}} > \delta_{\rm Fe^{III}}$$

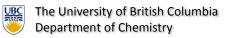
- $\ensuremath{\bullet}$ spin state can have important impact on δ
 - due to differences in shielding of Fe 3s and 4s orbitals by 3d orbitals in different spin states

- shielding depends on population distribution of electrons in 3d orbitals
 - more shielding from low-spin case
 - effect of shielding will always be *isotropic*
 - t_{2g} orbitals are more metallic (less covalent)
 - 3d delocalization is greater for HS config
 - shielding will be less effective in HS case

Hemes	δ
HS Fe ^{II}	+0.75-0.85 mm/s
LS Fe ^{II}	+0.18-0.43 mm/s
HS Fe ^{III}	+0.35-0.40 mm/s
LS Fe ^{III}	+0.15-0.35 mm/s

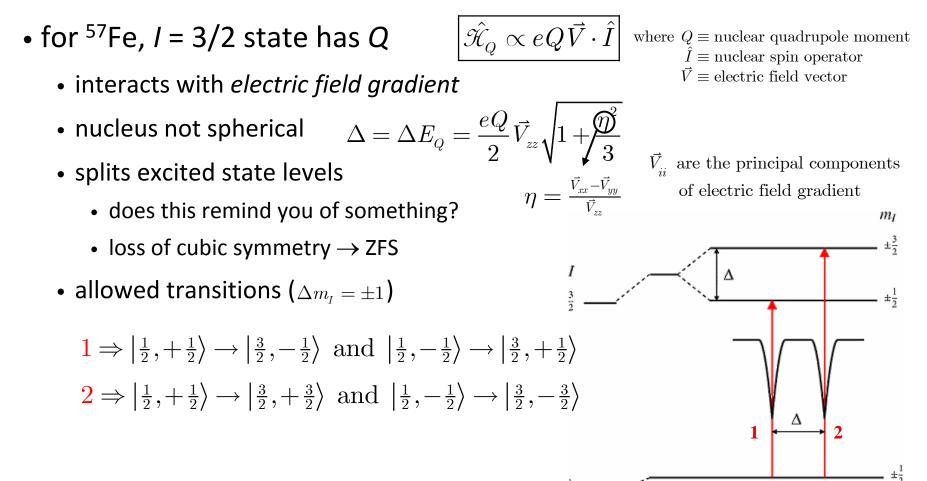




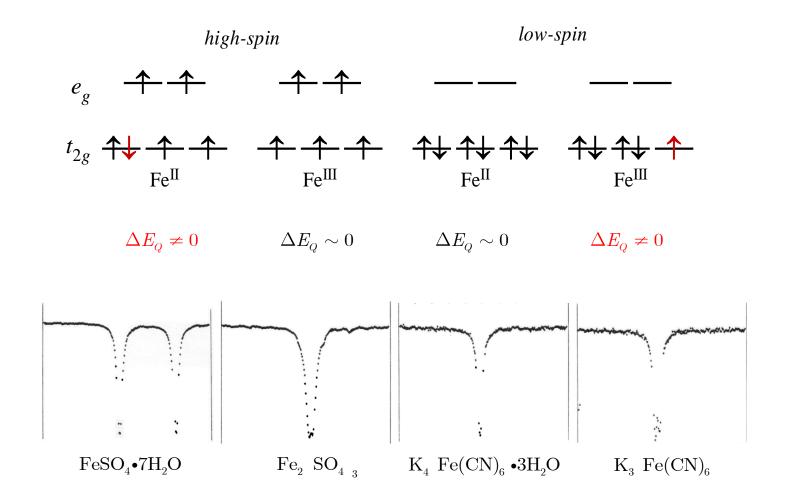

low-spin

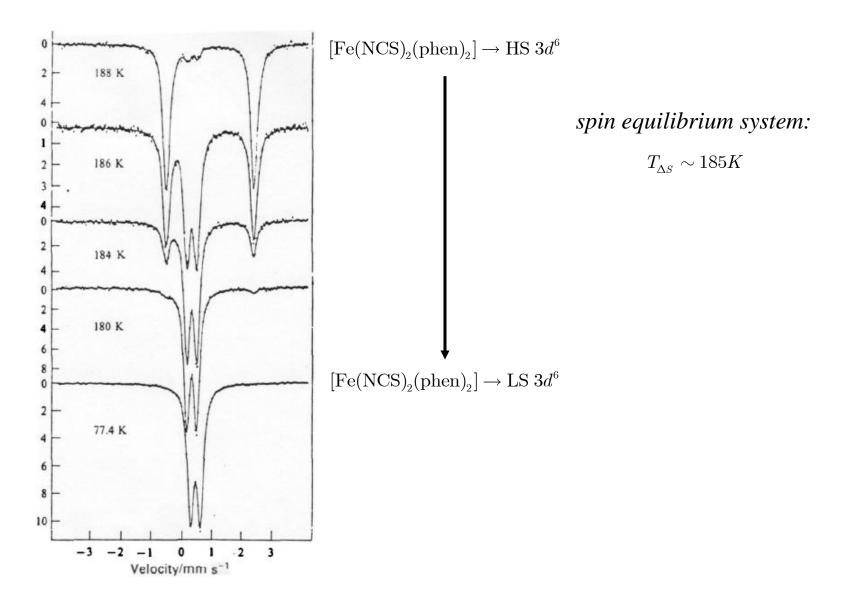
high-spin

Isomer shift ranges...



Electric Quadrupole Interaction

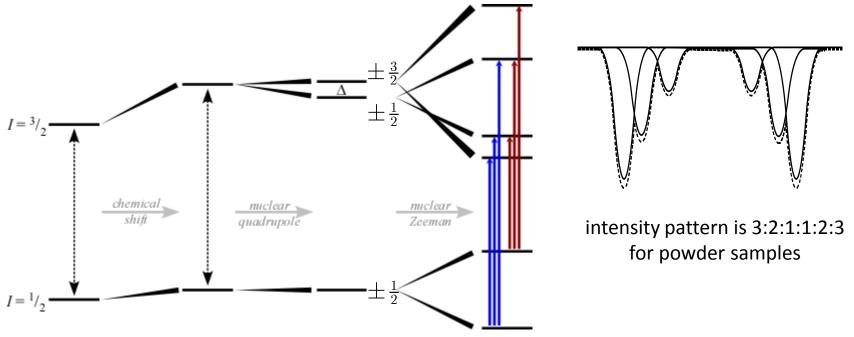

states with I > ½ will have nuclear quadrupole moment (Q)





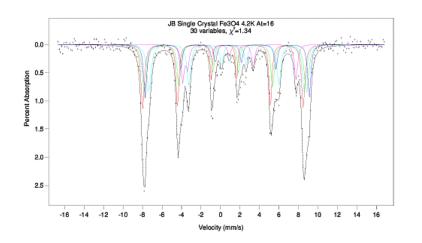
- if electronic distribution has cubic symmetry (x = y = z)
 - the nuclear quadrupole moment vanishes (*no electric field, V,* at nucleus)
 - therefore no quadrupole splitting
- therefore must have asymmetric electron distribution for quadrupolar splitting
 - asymmetry in electronic distribution also suggests that quadrupolar coupling should be anisotropic

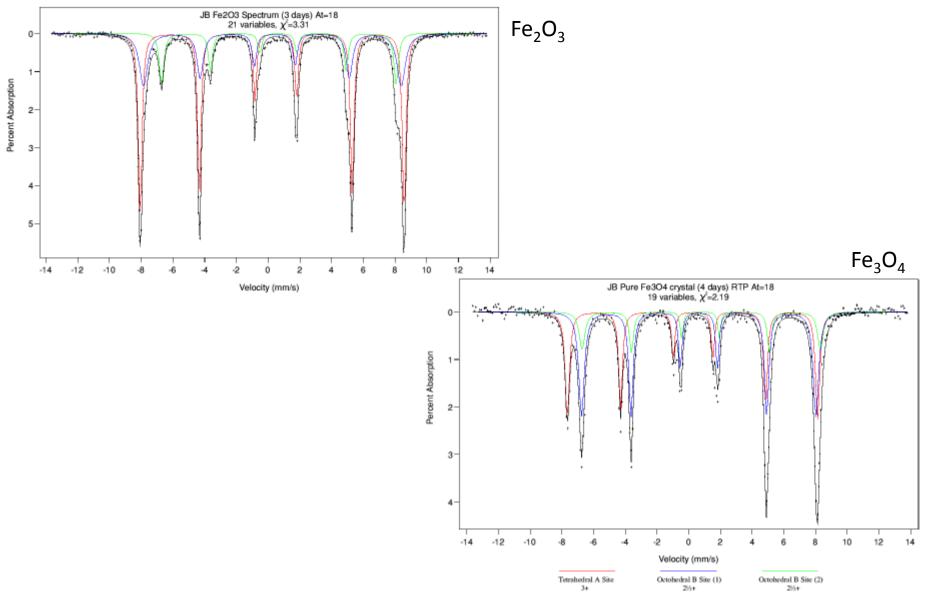
Isotope	IS standard	Oxidation state	IS range (mm s ⁻¹)	QS(QCC) ra (mm s ⁻¹)	inge
⁵⁷ Fe	Iron metal ^a	Iron(0)	-0.2 to -0.1	. 0.3 to 2.6	
		Iron(II) -HS ^b	+ 0.6 to + 1.7	1.0 to 4.5	a 16
		LS	-0.2 to $+0.4$	0.0 to 2.0	$3d^6$
		Iron(III)—HS	+0.1 to $+0.5$	0.0 to 0.7	n 15
		—LS	-0.1 to $+0.5$	0.0 to 1.5	$3d^5$
		Iron(IV)-HS	-0.2 to $+0.2$	0.0 to 1.0	n 14
		Iron(IV)—HS —LS	+0.1 to $+0.2$	1.5 to 2.5	$3d^4$



Effect of Magnetic Field on Mössbauer Spectra

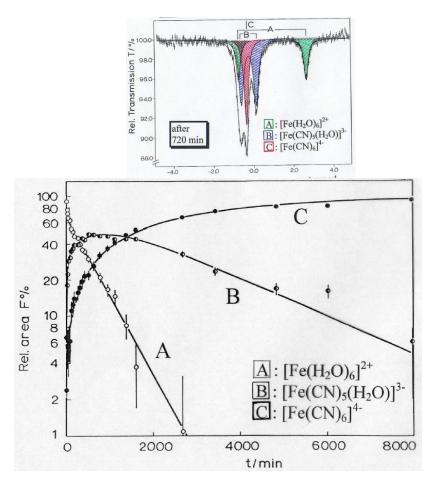
- the nuclear spin states will split nuclear Zeeman splitting!
 - changes energy level diagram, increases number of observable transitions
 - if quadrupolar splitting can occur \rightarrow anisotropy in the magnetic Mössbauer
 - if there is an electronic spin as well \rightarrow hyperfine coupling as well

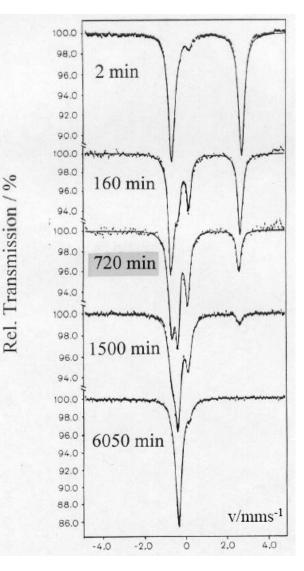

UBC


2.3 Mössbauer Spectroscopy

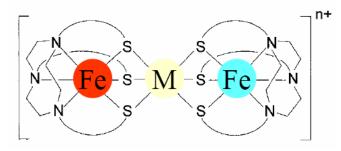
N M	W/
V.	V.

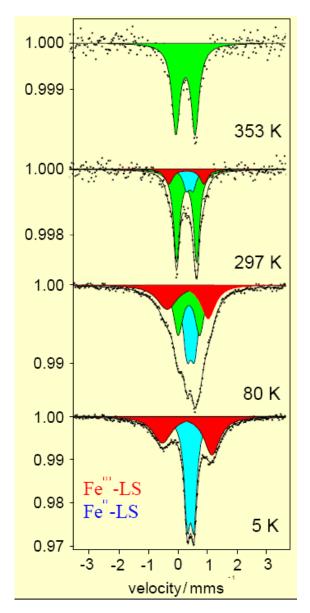
intensity pattern is 3:2:1:1:2:3 for powder samples


m ₂	-m ₁	m	<i>C</i> ²	Θ
+3/2	+1/2	1	3	$1 + \cos 2\Theta$
+1/2	+1/2	0	2	2 sin2 Θ
-1/2	+1/2	-1	1	$1 + \cos 2\Theta$
-3/2	+1/2	-2	0	0
+3/2	-1/2	2	0	0
+1/2	-1/2	1	1	$1 + \cos 2\Theta$
-1/2	-1/2	0	2	2 sin2 Θ
-3/2	-1/2	-1	3	$1 + \cos 2\Theta$



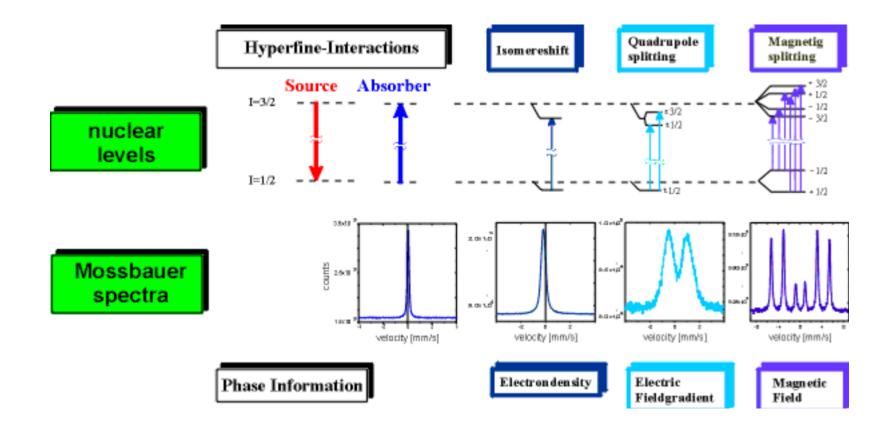
Following ligand exchange reactions


• $FeSO_4$ ·7H₂O + 6KCN (at 5degC)



UBC

Valence fluctuations in mixed-valence complexes...



[LFe^{III}Co^{III}Fe^{II}L]²⁺

Overall View of Mössbauer Spectroscopy

