MATH 600D: ASSIGNMENT 3

DUE: OCT 25, 2011

- (1) Let R be a ring and P a finitely generated R-module. Show that there is a well-defined homomorphism $Aut(P) \rightarrow K_1(R)$. Use this to show there is a natural product operation $K_0(R) \otimes K_1(S) \rightarrow K_1(R \otimes S)$.
- (2) Show that the rings R and $M_n(R)$ are **Morita** equivalent and conclude that $K_i(R) = K_i(M_n(R))$ for i = 0, 1. (Two rings R and S are said to be Morita equivalent if the categories R-mod and S-mod are equivalent.)
- (3) Let (r, s) be a unimodular row over a commutative ring R. Define Mennicke symbol $\begin{bmatrix} r \\ s \end{bmatrix}$ to be the class in $SK_1(R)$

of the matrix $\begin{pmatrix} r & s \\ t & u \end{pmatrix}$ where $t, u \in R$ satisfy ru - st = 1. Show that this symbol is independent of the choice of t and u, and that we have

(a)
$$\begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} s \\ r \end{bmatrix}$$

(b) $\begin{bmatrix} s \\ r \end{bmatrix} \begin{bmatrix} s' \\ r \end{bmatrix} = \begin{bmatrix} ss' \\ r \end{bmatrix}$

(4) Consider the functions $\rho_n : \mathbb{R}^{n-1} \to St_n(\mathbb{R})$ sending (r_1, \dots, r_{n-1}) to the product homomorphism $x_{in}(r_1)x_{2n}(r_2)\cdots x_{n-1,n}(r_{n-1})$. Show using Steinberg relations that this is a group homomorphism. Show that ρ_n is an injection by showing that the composition $\phi \circ \rho : \mathbb{R}^{n-1} \xrightarrow{\rho} St_n(\mathbb{R}) \to GL_n(\mathbb{R})$ is an injection.