Science:Math Exam Resources/Courses/MATH152/April 2017/Question B 01 (c)

MATH152 April 2017
Easiness: {{#w4grb_rawrating:Science:Math Exam Resources/Courses/MATH152/April 2017/Question B 01 (c)}}/100
•  QA 1  •  QA 2  •  QA 3  •  QA 4  •  QA 5  •  QA 6  •  QA 7  •  QA 8  •  QA 9  •  QA 10  •  QA 11  •  QA 12  •  QA 13  •  QA 14  •  QA 15  •  QA 16  •  QA 17  •  QA 18  •  QA 19  •  QA 20  •  QA 21  •  QA 22  •  QA 23  •  QA 24  •  QA 25  •  QA 26  •  QA 27  •  QA 28  •  QA 29  •  QA 30  •  QB 1(a)  •  QB 1(b)  •  QB 1(c)  •  QB 2  •  QB 3(a)  •  QB 3(b)  •  QB 3(c)  •  QB 4(a)  •  QB 4(b)  •  QB 4(c)  •  QB 4(d)  •  QB 5(a)  •  QB 5(b)  •  QB 5(c)  •  QB 6(a)  •  QB 6(b)  •  QB 6(c)  •
Other MATH152 Exams
 ' '

Question B 01 (c)

Three engineering students, Xiuying, Arjan, and Marianne decide to take a summer job painting homes. Xiuying paints three times as fast as Marianne and twice as fast as Arjan and Marianne combined. All three together paint a room in four hours.

(c) Solve the system above using Gaussian elimination on the augmented matrix. How many rooms can each of the three friends paint in an hour? Check that your answer matches the original information in the question.

 Make sure you understand the problem fully: What is the question asking you to do? Are there specific conditions or constraints that you should take note of? How will you know if your answer is correct from your work only? Can you rephrase the question in your own words in a way that makes sense to you? If you are stuck, check the hint below. Consider it for a while. Does it give you a new idea on how to approach the problem? If so, try it!