Entropy

From UBC Wiki
Jump to: navigation, search
ChemHelp.png This article is part of the ChemHelp Tutoring Wiki


Entropy in chemical thermodynamics Main article: Chemical thermodynamics Thermodynamic entropy is central in chemical thermodynamics, enabling changes to be quantified and the outcome of reactions predicted. The second law of thermodynamics states that entropy in the combination of a system and its surroundings (or in an isolated system by itself) increases during all spontaneous chemical and physical processes. Spontaneity in chemistry means “by itself, or without any outside influence”, and has nothing to do with speed. The Clausius equation of δqrev/T = ΔS introduces the measurement of entropy change, ΔS. Entropy change describes the direction and quantitates the magnitude of simple changes such as heat transfer between systems – always from hotter to cooler spontaneously.[12] Thus, when a mole of substance at 0 K is warmed by its surroundings to 298 K, the sum of the incremental values of qrev/T constitute each element's or compound's standard molar entropy, a fundamental physical property and an indicator of the amount of energy stored by a substance at 298 K.[13][14] Entropy change also measures the mixing of substances as a summation of their relative quantities in the final mixture.[15]

Entropy is equally essential in predicting the extent of complex chemical reactions, i.e. whether a process will go as written or proceed in the opposite direction. For such applications, ΔS must be incorporated in an expression that includes both the system and its surroundings, ΔSuniverse = ΔSsurroundings + ΔS system. This expression becomes, via some steps, the Gibbs free energy equation for reactants and products in the system: ΔG [the Gibbs free energy change of the system] = ΔH [the enthalpy change] −T ΔS [the entropy change].[13]


The second law Main article: Second law of thermodynamics An important law of physics, the second law of thermodynamics, states that the total entropy of any isolated thermodynamic system tends to increase over time, approaching a maximum value; and so, by implication, the entropy of the universe (i.e. the system and its surroundings), assumed as an isolated system, tends to increase. Two important consequences are that heat cannot of itself pass from a colder to a hotter body: i.e., it is impossible to transfer heat from a cold to a hot reservoir without at the same time converting a certain amount of work to heat. It is also impossible for any device that can operate on a cycle to receive heat from a single reservoir and produce a net amount of work; it can only get useful work out of the heat if heat is at the same time transferred from a hot to a cold reservoir. This means that there is no possibility of a "perpetual motion" which is isolated. Also, from this it follows that a reduction in the increase of entropy in a specified process, such as a chemical reaction, means that it is energetically more efficient.

In general, according to the second law, the entropy of a system that is not isolated may decrease. An air conditioner, for example, cools the air in a room, thus reducing the entropy of the air. The heat, however, involved in operating the air conditioner always makes a bigger contribution to the entropy of the environment than the decrease of the entropy of the air. Thus the total entropy of the room and the environment increases, in agreement with the second law.